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Introduction
At SQLBI we have a beautiful job: we are world-wide trainers and
consultants. We meet thousands of people all over the world
every year: a crowd of very diverse persons, sharing the same
passion for Business Intelligence and DAX. We are asked to solve
scenarios of various complexity by our students and customers.

Say a student approaches you because they need to compute
the number of new customers for their report. You solve the
problem once, twice, three times… And at some point, you feel
that the next time you need to answer the same question, you
would love to have a ready-to-use solution. This is the reason we
started the daxpatterns.com website in 2013. We started
collecting patterns that repeat themselves. We created a
collection of DAX formulas aimed at solving the most frequently-
asked questions we receive. At that time, the goal was not to write
a new book. Instead, our goal was to create some sort of memory
bank for the solutions we would find. We thought we would be the
main users of our own website.

As is often the case, real-life does not go according to plan. This
time, for the better. The website had a tremendous success.
Users downloaded the samples and achieved two different goals:
they found a ready-to-use solution to their problems, and they
improved their DAX skills based on the formulas we authored.
Because of the different file formats, we included samples for



Excel 2010 and Excel 2013 – the latter still works with later
versions of Excel. Eventually, we collected the content of the
website into a book. That was the first edition of DAX Patterns. It
was at the end of 2015. At the time, we had not yet published the
first edition of The Definitive Guide to DAX. Therefore, we
included a short introduction to DAX in the DAX Patterns book.

Many things changed over the following five years. DAX evolved
with many useful features. Most importantly, Power BI hit the
market and the number of users adopting DAX grew at an
exponential rate. Today, most of the DAX users create a Power BI
solution. When we published the first edition of this book, Power
BI had not even been announced yet.

During these five years, the process of collecting patterns
continued. We met more students, we solved more problems, we
also got better and better at DAX. Plus, we now had thousands of
users who were able to provide feedback on previous patterns.
Studying user comments gave us a better picture of what our
readers needed. In parallel, we went on to publish two editions of
The Definitive Guide to DAX. At that point, there was no longer a
reason to be teaching DAX in a book about patterns.

Long story short, it started to make a lot of sense to author a
new version of both the DAX Patterns website and book. We
rolled up our sleeves and created the book you are reading right
now.

We did not use any of the content from the previous book. We
wanted a fresh start. The entire library of code is rewritten from
scratch, using the latest DAX and Power BI features and adapting
the code to Excel 2019 when necessary.

In this new edition we made several choices:



We greatly increased the share of the book dedicated to
time intelligence calculations. Time intelligence is by far the
most widely studied topic. Therefore, it made sense to
increase the number of time-related calculations and
patterns.

Similarly, the New and returning customers pattern was an
absolute hit. We gave that pattern a bigger share of the
book as well, increasing the number of formulas and
models to compute new and returning customers.

We increased the number of patterns, adding several that –
in our experience – are likely to be useful to our readers.

We decided to cut out a few patterns. For example, the
chapter about statistical calculations was useful back in
2015, because of the lack of statistical functions in DAX.
Since then, DAX introduced many new functions to
compute the formulas that were explained in that chapter.
There is no need for that content in 2020.

We no longer provide code snippets. In the previous book,
most of the code was shown including placeholders for the
columns that readers were likely to change. We no longer
do that. We show code that works, because you often have
to adapt the data model and other details in the formula. We
felt this would make the code more readable and easier to
use and to adapt to your model.

We optimized every single formula. All the code you see in
these patterns has been thoroughly reviewed for
performance. This is not to say that these patterns are the
very best. They are the best we could come up with. If you
can make the code better and faster, let us know! The



comment sections on the website are the right place to
provide your feedback.

We created a Power BI and an Excel version of each
sample file. In the book, we include pictures of Power BI
reports showing the results of the code, but the examples
you can download are available in both formats: Power BI
and Excel.

We improved the readability of the eBook version of DAX
Patterns. This meant keeping the code formatting intact
regardless of the eBook reader size.

Why we published this book
If you are wondering what the differences may be between the
content of this book and the content published on
daxpatterns.com, we want to assure you that there are no
differences. Should you buy the book to obtain extra content? No.
The access to the web site is free, where you can read the same
content as what you will find in this book and download the
sample files for free.

That said, if you enjoy having an offline copy of the patterns, if
you enjoy having a printed version, if you would like to have it in
your eBook collection, then you should purchase it. This way, you
help us keep the business up and running. We were surprised
with the number of people who purchased the first edition. This
motivated us to further invest into this new version of the website
and the pattern. We hope the process will continue!

By visiting the daxpatterns.com website, you will also see that
we have recorded a video for each pattern. This is where we go
into more depth on how to use the patterns and how the formulas



work. These videos are for sale. You can buy all of them, or just
the pattern you want to study more. It is an additional service that
many people have been asking for; we know some prefer the
book, some prefer the video, and many people want both!

How to use this book
What will you find in this book? Each standalone chapter covers a
separate pattern and can be read without having read the others.
You can read the Currency conversion pattern without having ever
looked at the Basket analysis, or at any of the time-related
calculations.

Each chapter about a pattern starts with a brief description of the
business scenario; it then goes into a more complete description
of the solution, along with all the DAX code that needs to be
implemented in order to solve the scenario. We kept the
description of the code short, using comments in the code to
document the measures where needed.

You need separate companion content for the book. At the
beginning of each chapter, a short URL points to the
corresponding pattern on the daxpatterns.com website. You can
download the sample files for Power BI and Excel from the
website.

The book is intended to be used as a reference. When you want
to implement a pattern, you do not want to read long descriptions:
you want to see the code and the reason for it. Therefore, we kept
it as compact as possible, keeping the spotlight on the DAX code.

That said, if you want to implement a pattern we strongly
suggest that you read the entire chapter before implementing any
code. The reason is that we sometimes present multiple solutions



and you need to choose the best for your specific scenario. For
each pattern we also provide the demo files both in Power BI and
Power Pivot for Excel. Sometimes the code of the two versions is
slightly different. The book always presents the Power BI solution,
which is using the latest features of DAX at the time of printing.
Some of those features are not available in Power Pivot – like
calculated tables. This is the main reason for the differences.

There is only one exception: time-related calculations. As we
said, we gave the time-related calculations more space in the
book: we now present four different patterns for time-related
calculations. Each of these four patterns is huge. Together, they
represent more than 40% of this book. This is why we created an
introductory chapter to the time-related calculations, which aims to
help you choose the right pattern for your scenario. If you need to
implement time-related calculations, make sure to read the
introduction first, and then the full chapter covering the pattern you
decide to use.

Prerequisites
One word of advice to our readers: this book does not teach DAX.

You are expected to already know DAX to make the best use of
these patterns. Most of the patterns show advanced DAX
techniques that you are welcome to study and use in your
solutions. By reading this book you will not learn DAX. But if you
already know DAX, you will likely become a better DAX developer.

We suggest that you use these patterns with the latest version of
Power BI or Excel, because DAX evolves and improves over time.
We tested the patterns on Power BI June 2020, Excel 2019, and
Excel for Microsoft 365 version 2006. Most of the patterns work



with earlier versions of Power BI and Excel, but we cannot
guarantee this because we did not thoroughly test for all the
previous versions.

Acknowledgments
Last, but not least: the acknowledgments section.

The most important person we want to thank is you. This work
was made possible by the discussions we have had over time with
readers, users, customers, and students like yourself. Therefore,
even without knowing it you have contributed to this content; and
if you post comments in our public forums, you will be contributing
further.

That said, there are some people who directly contributed to the
entire writing process: Daniil Maslyuk meticulously reviewed each
pattern, found all the errors we had made and provided invaluable
feedback. Claire Costa reviewed our English grammar and
readability, making the book more precise and enjoyable. Sergio
Murru built the Excel versions of the sample files, which made the
patterns available also to Power Pivot for Excel users. Daniele
Perilli is the reason behind the book and the website being as
beautiful as they are. We are responsible for the content and for
any mistake, but if you can read accurate numbers, in good
English, in both Excel and Power BI, and with a gorgeous overall
presentation, it is thanks to them.

Enjoy DAX!





CHAPTER 1

Time-related calculations
This chapter introduces the four time-related calculations patterns
presented in the next chapters. The goal here is to help you choose
the right pattern based on your specific needs. Indeed, when it
comes to time-related calculations, the choice of the pattern is hard.

First, what is a time-related calculation? A time-related calculation
refers to any calculation that involves time. Examples include the
set of period-to-date calculations, like year-to-date, quarter-to-date,
or month-to-date. These calculations accumulate values from the
beginning of a time period – year, quarter, month – and they return
the aggregation of the measure from the start of the period to the
date shown in the report. The definition of a time period changes
depending on whether you work with the Gregorian calendar or a
fiscal calendar. In Figure 1-1, you can see an example of period-to-
date calculations, where YTD stands for year-to-date, and QTD for
quarter-to-date.



FIGURE 1-1 Examples of period-to-date calculations.

Included in these patterns are also comparisons of a parameter
over a certain period of time, with a different period of time. For
example, you can compare the sales of the current month against
the sales of the same month in the previous year. Another example
of time-related calculations is the moving average over a time
period, like a rolling average over 12 months which smoothes out
line charts and removes the effect of seasonality from calculations.
The four time-related patterns implement the same set of
calculations.

What makes the patterns so different from one another, is the
definition of what a calendar is. You can already appreciate the
different definitions of a year-to-date calculation by looking at Figure
1-1. Depending on whether you are working with the Gregorian or
the fiscal calendar, the numbers are different. When talking about a



calendar, things can easily become very complicated because of the
definition of the calendar.

For example, you might have a week-based calendar following an
ISO standard or your own definition. In a week-based calendar
every month starts the same day of the week, and the same goes
for the year. Therefore, a year in a week-based calendar might start
in the Gregorian year before, or end in the next one. Moreover,
some calendars split a year into 13 periods instead of 12 months,
for accounting purposes. The calendar requirements are the main
driver for the choice of the time-related pattern.

The four time-related patterns are presented in order of increasing
complexity:

1. Standard time-related calculations

2. Month-related calculations

3. Week-related calculations

4. Custom time-related calculations

The Standard time-related calculations pattern is implemented
using regular DAX time intelligence functions. It works based on the
assumption that your calendar is a regular Gregorian calendar and
that your fiscal calendar starts at the beginning of a Gregorian
quarter. For example, DAX time intelligence functions work fine if
your fiscal calendar starts on July 1 (start of the third quarter of a
Gregorian calendar). Yet, they might provide unexpected results if
your fiscal calendar starts on March 1 – both because March does
not start a Gregorian quarter, and because of a historical bug in
handling leap years with fiscal calendars. Despite these limitations,
the pattern is easy to use and implement because it relies on
standard DAX functions and works with a regular date table, with



few requirements.

The next three patterns do not use DAX time intelligence
calculations. Rather, they are written using basic DAX functions –
which leaves much more flexibility in the definition of what a
calendar is in terms of quarters, months, and weeks. These patterns
require you to build a Date table whose columns are required for the
DAX measures to identify the fractions of the year. For example,
you need one column containing the year, one for the quarter, one
for the month, plus additional columns to simplify the calculations.

Moreover, many details need to be considered when detecting and
filtering periods. Many calculations that look easy to humans prove
to be very complicated for a computer. When you compare one
quarter against the previous one, you need to select a different
number of days for the two quarters: the January-March quarter is
shorter than the April-June quarter. The same goes for the months:
January is longer than February, but if you want to make a
comparison month-over-month, you need two date selections of
different lengths.

If standard time intelligence functions do not meet your needs,
then you need to implement one of the other three patterns. All of
them require the creation of your own Date table.

The Month-related calculations pattern is the easiest one. It
implements all the calculations assuming that you are not interested
in the daily details. For example, if you need calculations and
reports that compare one month against another, then the pattern is
a good fit. The pattern does not support sub-month selections. If
you want to compare three days in a quarter against the same three
days in the previous quarter, then you exceed the potential of the
pattern: it just does not work. Despite strong limitations in its
analytical power (limited to monthly granularity) the month-related



pattern is extremely fast and simple to implement. Moreover, it can
handle scenarios where you have more than 12 months seamlessly.
It comes with the flexibility of a custom-made pattern, and it is
simpler than the standard time-related pattern. If you are ok with its
limitation about the month granularity, this should be the pattern of
choice.

In the Week-related calculations pattern, the week is the foundation
of the calendar. The ISO 8601 is one of the standards that provide a
definition of a week date system – even though many countries
adopt different national standards to identify years, quarters, and
weeks. One year has 52 or 53 weeks, one quarter has 13 weeks,
and each quarter is subdivided into 5+4+4 weeks, 4+5+4 weeks, or
4+4+5 weeks. When there are 53 weeks in a year, there are 14
weeks in one of the quarters. Because a week is not necessarily
entirely included in a month, the group of weeks within a quarter
should be called a “period” even though it is often referred to as a
month. For this reason, we refer to the month names as “periods” in
the following description.

Because weeks are the main entity, there is no correspondence
between a year in a Gregorian calendar and a year in a week-based
calendar. A week-based calendar always starts on the same
weekday, like Monday or Sunday. Therefore, only occasionally does
this day happen to fall on January 1. For a weekly year, it is totally
fine to start on December 29 of the previous year, or on January 3
of the current year. Despite being somewhat unusual, weekly
calendars come with some great characteristics: every “month” in a
quarter includes the same number of weekdays. Comparing one
quarter against another means comparing the same number of days
and the same distribution of weekdays.

Week-based calendars require a dedicated Date table with several



columns to drive the DAX calculations. Moreover, there are no pre-
existing DAX functions available to compute calculations over such
calendars. Therefore, week-based calculations are implemented
with custom DAX code. The complexity is higher than the month-
related pattern because the week-related pattern lets you filter any
time period, down to the day level. If you have a calendar based on
weeks, the week-based calculations pattern is what you have to
implement.

The Custom time-related calculations pattern is the most flexible
(and complex) one. This last pattern provides the same calculations
as the standard time-related pattern. The relevant difference is that
the entire pattern is written using basic DAX functions: we do not
use any DAX time intelligence functions. Consequently, the pattern
is extremely flexible because you can freely change the behavior of
the calculations. With greater flexibility comes greater complexity.

The DAX code of the last pattern is not trivial. It requires much
attention to small details. Use it only if none of the other patterns
satisfies your business requirements, and you really need the
complete flexibility it provides.

Finally, which pattern should you choose?

If your requirements are satisfied by a regular Gregorian
calendar, the Standard time-related calculations pattern is the
obvious choice.

If the month granularity is enough for your reporting needs –
which is often the case, more often than expected – then the
Month-related calculations pattern is the optimal choice: fast
and simple.

If you work with a calendar based on weeks, then you need
the Week-related calculations pattern.



If none of the above is enough and you really need total
flexibility, be prepared for a long and fascinating trip into the
intricacies of filter contexts and dive straight into the Custom
time-related calculations pattern.

Remember: with a Business Intelligence project, simpler is better.
Choose the most straightforward pattern that satisfies your needs.
Needless to say, if you are curious about the differences between
the various implementations, it might be useful to have a quick read
through all four chapters before making your choice.





CHAPTER 2

Standard time-related
calculations

Download sample files: https://sql.bi/dax-201

In this pattern, we show you how to compute time-related
calculations, like year-to-date, same period last year, and
percentage growth using a standard calendar. The great advantage
of working with a standard calendar is that you can rely on several
built-in time intelligence functions. The built-in functions are
designed in such a way that they provide the correct result for the
most common requirements.

In case your requirement cannot be fulfilled by the built-in functions,
or if you have a non-standard calendar, then you should use regular
(non-time-related) DAX functions to reach the same goal. This way,
you customize the result of your code at will. That said, if you need
custom calculations, then you also need to enrich your date table
with a set of columns that are needed by the DAX formulas to move
the filter. These custom calculations are covered in the Custom time-

https://sql.bi/dax-201


related calculations pattern.

If you are using a regular Gregorian calendar, then the formulas in
this pattern are the easiest and most effective way of producing time
intelligence calculations. Keep in mind that standard DAX time
intelligence functions only support a regular Gregorian calendar –
that is a calendar with 12 months, each month with its Gregorian
number of days, quarters made up of three months, and all the
regular aspects of a calendar that we are used to.

Introduction to time intelligence
calculations

In order to use any time intelligence calculation, you need a well-
formed date table. The Date table must satisfy the following
requirements:

All dates need to be present for the years required. The Date
table must always start on January 1 and end on December
31, including all the days in this range. If the report only
references fiscal years, then the date table must include all the
dates from the first to the last day of a fiscal year. For
example, if the fiscal year 2008 starts on July 1, 2007, then
the Date table must include all the days from July 1, 2007 to
June 30, 2008.

There needs to be a column with a DateTime or Date data type
containing unique values. This column is usually called Date.
Even though the Date column is often used to define
relationships with other tables, this is not required. Still, the
Date column must contain unique values and should be
referenced by the Mark as Date Table feature. In case the
column also contains a time part, no time should be used – for



example, the time should always be 12:00 am.

The Date table must be marked as a date table in the model,
in case the relationship between the Date table and any other
table (like Sales in our example) is not based on the Date
column.

There are several ways to build a Date table. The way you build the
Date table does not affect how you use the standard time intelligence
calculations, as long as the date table satisfies the requirements. If
you already have a Date table that works well for your report, just
import it and mark it as a date table after having checked that it
satisfies the minimum requirements. If you do not have a Date table,
you can create one using a DAX calculated table as described later.

It is a best practice to apply the Mark as a Date Table setting to the
Date table used for time intelligence calculations. The Mark as a
Date Table setting adds a REMOVEFILTERS modifier over the Date
table every time a filter is applied to the Date column. This action
(applying a filter on the Date column) is performed by all the time
intelligence functions used in CALCULATE. DAX implements the
same behavior if you define the relationship between Sales and Date
using the Date column. Nevertheless, applying the Mark as a Date
Table setting to a date table is a best practice. If you have multiple
date tables, you can mark all of them as date tables.

If you do not use the Mark as a Date Table setting and you do not
use the date column for the relationship, then you must add a
REMOVEFILTERS over the Date table whenever you use a time
intelligence function in CALCULATE. This behavior is described in
more detail in the article Time Intelligence in Power BI Desktop.

What are standard DAX time

https://www.sqlbi.com/articles/time-intelligence-in-power-bi-desktop/


intelligence functions
The standard time intelligence functions are table functions returning
a list of dates used as a filter in CALCULATE. The result of a time
intelligence function can be obtained by writing a more complex filter
expression. For example, the DATESYTD function returns all the
dates in the same year between the first day of the year and the last
day visible in the filter context. The following expression:

corresponds to the following FILTER expression:

There are many time intelligence functions, most of which we
present in this pattern. Be mindful: time intelligence functions should
be used as filter arguments of CALCULATE, and sometimes you will
resort to variables to achieve that. It is dangerous to use time
intelligence functions in iterators, because of the implicit context
transition that is triggered to retrieve the dates active from the filter
context. More details about this behavior are available in the DAX
Guide documentation, like https://dax.guide/datesytd/ .

The following is a quick guide to the best practices when using time
intelligence functions:

https://dax.guide/datesytd/


Use time intelligence functions like DATESYTD only in filter
arguments of CALCULATE / CALCULATETABLE, or to assign
filters to variables.

Use scalar functions like EDATE and EOMONTH in DAX
formulas returning a value – also known as scalar
expressions. These functions are not time intelligence
functions and can be used in expressions evaluated in a row
context.

Use CONVERT to convert a date into a number and vice
versa.

A complete updated list of time intelligence functions is
available at https://dax.guide/.

DAX beginners often confuse time intelligence functions with
regular – scalar – time functions. This confusion leads to common
mistakes that can be avoided by following these suggestions:

DO NOT use DATEADD to return the previous or the following
day. You can use simple mathematical operators to do that.

DO NOT use PREVIOUSDAY to compute the previous day in
a scalar expression. You can just subtract one from a date to
obtain the previous day in a scalar expression.

DO NOT use EOMONTH as a filter – use ENDOFMONTH
instead. EOMONTH is a scalar expression. ENDOFMONTH is
a time intelligence function. Always pay attention to the return
type of a function: only table functions are time intelligence
functions, and they should not be used in scalar expressions.

Disabling the Auto Date/Time

https://dax.guide/


Power BI can automatically add a Date table to a data model. Yet, we
strongly suggest disabling the automatic Date table created by Power
BI and importing or creating an explicit Date table instead. More
details are included in the article Automatic time intelligence in
Power BI.

The presence of an automatic Date table also enables a specific
syntax called column variation. Column variations are expressed
with a dot after the date column, followed by a column of the date
table that is created automatically:

Power BI quick measures make extensive use of column variations
when used over an automatic Date table. We do not rely on the date
tables created automatically in Power BI because we want to
maintain maximum flexibility and maximum control over our model.
The syntax of column variations is not used for Date tables that are
part of the model and thus are not created automatically.

Limitations of standard time
intelligence functions
The standard time intelligence functions work on a regular Gregorian
calendar. They have several limitations, listed in this section. When
your requirements are not compatible with these limitations, you
need another pattern (see Custom time-related calculations and
Week-related calculations).

The year starts on the first of January. There is limited support
for fiscal calendars starting at a different date. However, the
first day of the fiscal year must always be the same for every

https://www.sqlbi.com/articles/automatic-time-intelligence-in-power-bi/


year and cannot be the first of March, because of historical
bugs related to leap years.

The quarters always start on the first of January, April, July,
and October. The range of a quarter cannot be modified.

A month is always a calendar month.

Filters of additional columns such as Day of Week or Working
Day might not be supported correctly by standard time
intelligence functions. More details about possible
workarounds are available in the section, “Filtering other date
attributes”.

Consequently, many advanced calculations like calculations over
weeks are not supported by the standard time intelligence
calculations. These advanced calculations require a custom
calendar.

Building a Date table
DAX time intelligence functions work on any standard Gregorian
calendar table. If you already have a Date table, you can import the
table and use it without any issue. If a Date table is not available, you
can create one using a DAX calculated table. As an example, the
following DAX expression defines the simple Date table used in this
chapter:

Calculated table



You can customize the first three variables to build a Date table that
meets specific business requirements. In order to obtain the correct
result, the columns must be configured in the data model as follows
– when the column is not text, it is a Date data type with standard or
custom format:

Date: m/dd/yyyy (8/14/2007), used as a column to mark as
date table

Year: yyyy (2007)

Year Quarter: Text (Q3-2008)



Year Quarter Date: Hidden (9/30/2008)

Quarter: Text (Q1)

Year Month: mmm yyyy (Aug 2007)

Month: mmm (Aug)

Day of Week: ddd (Tue)

Fiscal Year: \F\Y yyyy (FY 2008)

Fiscal Year Quarter: Text (FQ1-2008)

Fiscal Year Quarter Date: Hidden (9/30/2008)

Fiscal Quarter: Text (FQ1)

The Date table in this pattern has two hierarchies:

Calendar: Year (Year), Quarter (Year Quarter), Month (Year
Month)

Fiscal: Year (Fiscal Year), Quarter (Fiscal Year Quarter), Month
(Year Month)

Regardless of the source, the Date table must also include a hidden
DateWithSales calculated column to use the formulas of this pattern:

Calculated column in the Date table

The Date[DateWithSales] column is TRUE if the date is on or before
the last date with transactions in the Sales table; it is FALSE
otherwise. In other words, DateWithSales is TRUE for “past” dates and
FALSE for “future” dates, where “past” and “future” are relative to the
last date with transactions in Sales.



Controlling the visualization in future
dates
Most of the time intelligence calculations should not display values
for dates after the last date available. For example, a year-to-date
calculation can also show values for future dates, but we want to
hide those values. The dataset used in these examples ends on
August 15, 2009. Therefore, we consider the month of August 2009,
the third quarter of 2009 (Q3-2009), and the year 2009 as the last
periods with data. Any date later than August 15, 2019 is considered
as future, and we want to hide values there.

In order to avoid showing results in future dates, we use the
following ShowValueForDates measure. ShowValueForDates returns
TRUE if the time period selected is not after the last period with data:

Measure (hidden) in the Date table

The ShowValueForDates measure is hidden. It is a technical
measure created to reuse the same logic in many different time-
related calculations, and the user should not use ShowValueForDates
directly in a report.



Naming convention
This section describes the naming convention we adopted to
reference the time intelligence calculations. A simple categorization
shows whether a calculation:

shifts over a period of time, for example the same period in the
previous year;

performs an aggregation, for example year-to-date; or

compares two time periods, for example this year compared to
last year.



Computing period-to-date totals
The year-to-date, quarter-to-date, and month-to-date calculations
modify the filter context for the Date table, applying a range of dates
as a filter that overwrites the filter for the period selected.

All these calculations can be implemented using a regular
CALCULATE with a time intelligence function, or with one of the
TOTAL functions such as TOTALYTD. TOTAL functions are just
syntactic sugar for the CALCULATE version. We show them as a



reference, even though we prefer the CALCULATE version – indeed,
using CALCULATE makes the formula logic more evident, and it
provides more flexibility than TOTAL functions do. The formulas
using the TOTAL functions are marked as (2) in the following
examples. The purpose of showing them is only to show that they
return the same values as the CALCULATE version does.

Year-to-date total
The year-to-date aggregates data starting on January 1 of the year,
as shown in Figure 2-1.

FIGURE 2-1 Sales YTD (simple) shows the value for any time period, whereas Sales YTD and
Sales YTD (2) hide the result after the last period with data.

The year-to-date total of a measure can rely on the DATESYTD
function this way:



Measure in the Sales table

DATESYTD returns the set of dates from the first day of the current
year, up to the last date visible in the filter context. Therefore, the
Sales YTD (simple) measure shows data even for future dates in the
year. We can avoid this behavior in the Sales YTD measure by
returning a result only when the ShowValueForDates measure returns
TRUE:

Measure in the Sales table

If the report is based on a fiscal year that does not correspond to
the calendar year, DATESYTD requires an additional argument to
identify the last day of the fiscal year. Take for example, the report in
Figure 2-2.



FIGURE 2-2 Sales Fiscal YTD and Sales Fiscal YTD (2) show the year-to-date based on fiscal
years.

The Sales Fiscal YTD measure specifies the last day and month of
the fiscal year in the second argument of DATESYTD. The following
measure uses June 30 as the last day of the fiscal year. The second
argument of DATESYTD must be a constant value (also called a
literal) corresponding to the definition of the fiscal year in the Date
table; it cannot be computed dynamically:



Measure in the Sales table

The TOTALYTD function is a possible alternative to DATESYTD:

Measure in the Sales table

Measure in the Sales table



Quarter-to-date total
The quarter to date aggregates data from the first day of the quarter,
as shown in Figure 2-3.

FIGURE 2-3 Sales QTD shows the quarter-to-date amount, which is blank for 2009 because
there is no data in Q4-2009.

The quarter-to-date total of a measure is computed with the
DATESQTD function as follows:

Measure in the Sales table



The TOTALQTD is a possible alternative to DATESQTD:

Measure in the Sales table

Month-to-date total
The month to date aggregates data from the first day of the month,
as shown in Figure 2-4.



FIGURE 2-4 Sales MTD shows the month-to-date amount, which is blank for CY 2009 and
Q3-2009 because there is no data after August 15, 2009.

The month-to-date total of a measure is computed with the



DATESMTD function this way:

Measure in the Sales table

The TOTALMTD is a possible alternative to DATESMTD :

Measure in the Sales table

Computing period-over-period growth
A common requirement is to compare a time period with the same
time period in the previous year, quarter, or month. The last
month/quarter/year could be incomplete; so in order to achieve a fair
comparison, the comparison should consider an equivalent period.
For these reasons, the calculations shown in this section use the
Date[DateWithSales] calculated column, as described in the article
Hiding future dates for calculations in DAX.

https://www.sqlbi.com/articles/hiding-future-dates-for-calculations-in-dax/


Year-over-year growth
Year-over-year compares a period to the equivalent period in the
previous year. In this example, data is available until August 15,
2009. For this reason, Sales PY shows numbers related to 2008 only
considering transactions prior to August 15, 2008. Figure 2-5 shows
that Sales Amount of August 2008 is 721,560.95, whereas Sales PY for
August 2009 returns 296,529.51 because the measure only
considers sales up to August 15, 2008.

FIGURE 2-5 For August 2009, Sales PY shows the amount for August 1-15, 2008, because
there is no data after August 15, 2009.

Sales PY uses DATEADD and filters Date[DateWithSales] to
guarantee a fair comparison of the last period with data. The year-
over-year growth is computed as an amount in Sales YOY, and as a



percentage in Sales YOY %. Both measures use Sales PY to only
consider dates up to August 15, 2009:

Measure in the Sales table

Measure in the Sales table

 Measure in the Sales table



Sales PY can also be written using SAMEPERIODLASTYEAR.
SAMEPERIODLASTYEAR is easier to read, but it does not offer any
performance benefit. This is because internally, it is translated into
the DATEADD function used in previous formulas:

Measure in the Sales table

Quarter-over-quarter growth
Quarter-over-quarter compares a period with the equivalent period in
the previous quarter. In this example, data is available until August
15, 2009, which is the first half of the third quarter of 2009.
Therefore, Sales PQ for August 2009 (the second month of the third
quarter) shows sales until May 15, 2009, which is the first half of the
second month of the previous quarter. Figure 2-6 shows that Sales
Amount of May 2009 is 1,067,165.23, whereas Sales PQ for August
2009 returns 435,306.10, only taking into account sales made prior
to May 15, 2009.



FIGURE 2-6 For August 2009, Sales PQ shows the amount for May 1-15, 2009; indeed, there
is no data after August 15, 2009.

Sales PQ uses DATEADD and filters Date[DateWithSales] to
guarantee a fair comparison with the last period with data. The
quarter-over-quarter growth is computed as an amount in Sales QOQ
and as a percentage in Sales QOQ %. Both measures use Sales PQ to
guarantee the same fair comparison:

Measure in the Sales table



Measure in the Sales table

Measure in the Sales table

Month-over-month growth
Month-over-month compares a time period with its equivalent in the



previous month. In this example, data is only available until August
15, 2009. For this reason, Sales PM only considers sales between
July 1-15, 2009 in order to return a value for August 2009. That way,
it only returns the corresponding portion of the previous month.
Figure 2-7 shows that Sales Amount for July 2009 is 1,068,396.58,
whereas Sales PM of August 2019 returns 584,212.78, since it only
takes into account sales prior to July 15, 2009.

FIGURE 2-7 For August 2009, Sales PM shows the amount in the July 1-15, 2009 time
period; indeed, there is no data after August 15, 2009.

Sales PM uses DATEADD and filters the Date[DateWithSales] column
to guarantee a fair comparison of the last period with data. The
month-over-month growth is computed as an amount in Sales MOM
and as a percentage in Sales MOM %. Both measures use Sales PM
to guarantee the same fair comparison:

Measure in the Sales table



Measure in the Sales table

Measure in the Sales table



Period-over-period growth
Period-over-period growth automatically selects one of the measures
previously described in this section based on the current selection of
the visualization. For example, it returns the value of month-over-
month growth measures if the visualization displays data at the
month level, switching to year-over-year growth measures if the
visualization shows the total at the year level. The expected result is
visible in Figure 2-8.



FIGURE 2-8 Sales PP shows the value of the previous month at the month level, of the
previous quarter at the quarter level, and of the previous year at the year level.

The three measures Sales PP, Sales POP, and Sales POP % redirect
the evaluation to the corresponding year, quarter, and month
measures depending on the level selected in the report. The
ISINSCOPE function detects the level used in the report. The
arguments passed to ISINSCOPE are the attributes used in the rows
of the Matrix visual in Figure 2-8. The measures are defined as



follows:

Measure in the Sales table

Measure in the Sales table

Measure in the Sales table

Computing period-to-date growth



The growth of a “to-date” measure is the comparison of the “to-date”
measure with the same measure over an equivalent period with a
specific offset. For example, you can compare a year-to-date
aggregation against the year-to-date in the previous year, that is with
an offset of one year.

All the measures in this set of calculations take care of partial
periods. Because data is available only until August 15, 2009 in our
example, the measures make sure that data in the previous year
does not consider dates after August 15, 2019.

Year-over-year-to-date growth
Year-over-year-to-date growth compares the year-to-date at a
specific date with the year-to-date at an equivalent date in the
previous year. Figure 2-9 shows that Sales PYTD in 2009 is only
considering transactions until August 15, 2008. For this reason, Sales
YTD of Q3-2008 is 7,129,971.53, whereas Sales PYTD for Q3-2009 is
less: 5,741,502.86.



FIGURE 2-9 For Q3-2009, Sales PYTD shows the amount of January 1-August 15, 2008
because there is no data after August 15, 2009.

Sales PYTD uses DATEADD and filters the Date[DateWithSales]
column to guarantee a fair comparison of the last period with data.
Sales YOYTD and Sales YOYTD % rely on Sales PYTD to guarantee the
same fair comparison:

Measure in the Sales table

Measure in the Sales table



Measure in the Sales table

Sales PYTD shifts the date filter back one year by using DATEADD.
Using DATEADD makes it easy to apply shifts of two or more years.
However, to shift dates back by one year Sales PYTD can also be
written using SAMEPERIODLASTYEAR as in the following example,
which internally uses DATEADD as in the previous example:

Measure in the Sales table

Quarter-over-quarter-to-date growth
Quarter-over-quarter-to-date growth compares the quarter-to-date at
a specific date with the quarter-to-date at an equivalent date in the
previous quarter. Figure 2-10 shows that Sales PQ in August 2009 is
only considering transactions until May 15, 2008, to only get the first
half of the previous quarter. For this reason Sales QTD of May 2009 is



1,746,058.45, whereas Sales PQTD for August 2009 is lower:
1,114,199.32.

FIGURE 2-10 Sales PQTD shows for Aug 2009 the amount of the period April 1-May 15,
2009, because there is no data after August 15, 2009.

Sales PQTD uses DATEADD and filters the Date[DateWithSales]
column to guarantee a fair comparison of the last period with data.
Sales QOQTD and Sales QOQTD % rely on Sales PQTD to guarantee
the same fair comparison:

Measure in the Sales table



Measure in the Sales table

Measure in the Sales table



Month-over-month-to-date growth
Month-over-month-to-date growth compares a month-to-date at a
specific date with the month-to-date at an equivalent date in the
previous month. Figure 2-11 shows that Sales PMTD in August 2009
is only considering sales until July 15, 2009, to only get the
corresponding portion of the previous month. For this reason Sales
MTD of July 2009 is 1,068,396.58, whereas Sales PMTD for August
2009 is less: 584,212.78.

FIGURE 2-11 For Aug 2009, Sales PQTD shows the amount of the period July 1-July 15,
2009, because there is no data after August 15, 2009.



Sales PMTD uses DATEADD and filters the Date[DateWithSales]
column to guarantee a fair comparison of the last period with data.
Sales MOMTD and Sales MOMTD % rely on the Sales PMTD measure
to guarantee the same fair comparison:

Measure in the Sales table

Measure in the Sales table

Measure in the Sales table



Comparing period-to-date with previous
full period

Comparing a to-date aggregation with the previous full period is
useful when you consider the previous period as a benchmark. Once
the current year-to-date reaches 100% of the full previous year, this
means we have reached the same performance as the previous full
period, hopefully in fewer days.

Year-to-date over the full previous
year
The year-to-date over the full previous year compares the year-to-
date against the entire previous year. Figure 2-12 shows that in
November 2008 Sales YTD almost reaches Sales Amount for the entire
year 2007. Sales YTDOPY% provides an immediate comparison of the
year-to-date with the total of the previous year; it shows growth over
the previous year when the percentage is positive, as is the case
starting December 1, 2008.



FIGURE 2-12 Sales YTDOPY % shows a positive percentage from December 1, 2008, when
the Sales YTD starts to be greater than Sales Amount for 2007.

The year-to-date-over-previous-year growth is computed by the Sales
YTDOPY and Sales YTDOPY % measures; these rely on the Sales YTD
measure to compute the year-to-date value, and on the Sales PYC
measure to get the sales amount of the entire previous year:

Measure in the Sales table

Measure in the Sales table



Measure in the Sales table

The Sales PYC measure can also be written using
PREVIOUSYEAR, whose behavior is similar to PARALLELPERIOD
(the difference is not relevant for this example):

Measure in the Sales table



PREVIOUSYEAR is mandatory if the comparison uses the fiscal
year because PREVIOUSYEAR accepts a second argument to
specify the last day of the fiscal year. Look at the following report in
Figure 2-13, which is slicing the measures by fiscal periods.

FIGURE 2-13 Sales Fiscal YTDOPY % compares Sales YTD with the Sales Amount of the
previous fiscal year.

The measures used in the report are defined as follows. Please pay
attention to the second argument of PREVIOUSYEAR in Sales Fiscal
PYC:

Measure in the Sales table



Measure in the Sales table

Measure in the Sales table

Quarter-to-date over full previous
quarter
The quarter-to-date over full previous quarter compares the quarter-
to-date against the entire previous quarter. Figure 2-14 shows that
Sales QTD in May 2008 surpasses the total Sales Amount for Q1-2008.
Sales QTDOPQ% provides an immediate comparison of the quarter-
to-date with the total of the previous quarter; it shows growth over
the previous quarter when the percentage is positive, as is the case
starting in May 2008.



FIGURE 2-14 Sales QTDOPQ % shows a positive percentage from May 2008, when Sales
QTD starts to be greater than the Sales Amount for Q1-2008.

The quarter-to-date-over-previous-quarter growth is computed with
the Sales QTDOPQ and Sales QTDOPQ % measures; these rely on the
Sales QTD measure to compute the quarter-to-date value and on the
Sales PQC measure to get the sales amount of the entire previous
quarter:

Measure in the Sales table

Measure in the Sales table



Measure in the Sales table

The Sales PQC measure can also be written using
PREVIOUSQUARTER, as long as it is not used at the year level for
more than one quarter:

Measure in the Sales table



Month-to-date over full previous
month
The month-to-date over full previous month compares the month-to-
date against the entire previous month. Figure 2-15 shows that Sales
MTD during April 2008 surpasses the total Sales Amount for March
2008. The Sales MTDOPM% provides an immediate comparison of
the month-to-date with the total of the previous month; it shows
growth over the previous month when the percentage is positive as
is the case starting April 19, 2008.



FIGURE 2-15 Sales MTDOPM % shows a positive percentage from April 19, 2008, when
Sales MTD starts to be greater than the Sales Amount for March 2008.

The month-to-date-over-previous-month growth is computed with
the Sales MTDOPM % and Sales MTDOPM measures; these rely on
the Sales MTD measure to compute the month-to-date value and on
the Sales PMC measure to get the sales amount of the entire
previous month:

Measure in the Sales table



Measure in the Sales table

Measure in the Sales table

The Sales PMC measure can also be written using
PREVIOUSMONTH, as long as it is not used at the quarter or year
level for more than one month:

Measure in the Sales table



Using moving annual total calculations
A common way to aggregate data over several months is by using
the moving annual total instead of the year-to-date. The moving
annual total includes the last 12 months of data. For example, the
moving annual total for March 2008 includes data from April 2007 to
March 2008.

Moving annual total
The Sales MAT measure computes the moving annual total, as shown
in Figure 2-16.



FIGURE 2-16 Sales MAT in March 2008 aggregates Sales Amount from April 2007 to March
2008.

The moving annual total uses DATESINPERIOD to select the
previous year:

Measure in the Sales table



DATESINPERIOD returns the set of dates starting from the date
passed in the second argument and applying an offset specified in
the third and fourth arguments. For example, the Sales MAT measure
returns the dates included in the full year before the last date
available in the filter context. The same result could have been
obtained by specifying -12 and MONTH in the third and fourth
arguments, respectively.

Moving annual total growth
The moving annual total growth is computed with the Sales PYMAT,
Sales MATG, and Sales MATG % measures, which rely on the Sales
MAT measure. The Sales MAT measure provides a correct value one
year after the first sale ever (when it collects one full year of data),
and it is not protected in case the current time period is shorter than
a full year. For example, the amount for the full year 2009 of Sales
PYMAT is 9,927,582.99, which corresponds to the Sales Amount of
2008 as shown in Figure 2-17. When compared with sales in 2009,
this produces a comparison of less than 8 months – data being only



available until August 15, 2009 – with a full year 2008. Similarly, you
can see that Sales MATG % starts in 2008 with very high values and
stabilizes after a year. The first values are due to the effect of having
no sales in the previous year. This behavior is by design: the moving
annual total is usually computed at the month or day granularity to
show trends in a chart.

FIGURE 2-17 Sales MATG % shows the growth between Sales MAT and Sales PYMAT as a
percentage.

The measures are defined as follows:

Measure in the Sales table



Measure in the Sales table

Measure in the Sales table

The Sales PYMAT measure can also be written using
SAMEPERIODLASTYEAR as in the following example, which
internally uses DATEADD as in the previous example:



Measure in the Sales table

Moving averages
The moving average is typically used to display trends in line charts.
Figure 2-18 includes the moving average of Sales Amount over 30
days (Sales AVG 30D), three months (Sales AVG 3M), and a year (Sales
AVG 1Y).

FIGURE 2-18 Sales AVG 30D, Sales AVG 3M, and Sales AVG 1Y show the moving average
over 30 days, three months, and one year, respectively.

Moving average 30 days



The Sales AVG 30D measure computes the moving average over 30
days by iterating a list of the last 30 dates obtained by
DATESINPERIOD:

Measure in the Sales table

This pattern is very flexible. But for a regular additive calculation,
Result can be implemented using a different and faster formula:



Moving average 3 months
The Sales AVG 3M measure computes the moving average over three
months by iterating a list of the dates in the last three months
obtained by DATESINPERIOD:

Measure in the Sales table



For simple additive measures, the pattern based on DIVIDE which
is shown for the moving average over 30 days can also be used for
the average over three months.

Moving average 1 year
The Sales AVG 1Y measure computes the moving average over one



year by iterating a list of the dates in the last year obtained by
DATESINPERIOD:

Measure in the Sales table

For simple additive measures, the same pattern based on DIVIDE,
shown for the moving average over 30 days can also be used for the
average over one year.



Filtering other date attributes
Once you mark the Date table as a date table, DAX automatically
removes any filter from the Date table every time CALCULATE filters
the date column of the Date table. This behavior is by design. Its goal
is to simplify the writing of time intelligence calculations. Indeed, if
DAX did not remove the filters, it would be necessary to manually
add a REMOVEFILTERS over the Date table every time a DAX time
intelligence function is used, resulting in a negative development
experience.

The automatic removal of the filters from the Date table might
introduce issues for some particular reports. For example, if a report
computes the year-to-date of sales by slicing the amount by day of
the week, the result obtained by only using the time intelligence
function DATESYTD is wrong. Figure 2-19 shows that the result of
Sales YTD for each day of the week is slightly smaller or equal to the
row total, which is showing the value for all the days of the week.

FIGURE 2-19 Slicing the measure Sales YTD by day of the week produces an inaccurate
result.

The reason for the inaccurate value is that DATESYTD applies a
filter on the Date[Date] column. Because Date is marked as a date



table, DAX automatically applies a REMOVEFILTERS( ‘Date’ )
modifier to the same CALCULATE where DATESYTD is used in a
filter argument – thus removing the filter on the day of the week.
Therefore, the number shown is the year-to-date regardless of any
filter on the weekday. The day-of-week filter only affects the last day
of the period specified on the rows of the report – year or quarter.
The correct result, shown in Figure 2-20, requires a different
approach.

FIGURE 2-20 Slicing Sales YTD (day of week) by day of the week produces the correct result.

There are two options to obtain the correct value: either reiterate
the filter over the day of the week in the CALCULATE statement, or
update the data model.

Restoring the filter over the day of the week requires adding
VALUES ( Date[Day of Week] ) only if the columns are filtered, like in
the following code:

Measure in the Sales table



This first solution works well, but it comes with a significant
shortcoming: there are two different versions of the calculation
depending on whether the Date[Day of Week] column is filtered or not.
On large models, this might have a noticeable impact on
performance.

There is another solution to this scenario that requires updating the
data model. Instead of using the Date table to select the day of the
week, we can store the day of the week in a separate table that
filters Sales without being related to Date. This way, the automatic
filter removal over Date does not affect the existing filter over the day
of the week. For example, the Day of Week table can be created as a
calculated table:

Calculated table



The Day of week table must have a relationship between Sales[Order
Date] and ‘Day of week’[Date], meaning the model must look like the
one in Figure 2-21.

FIGURE 2-21 The new Day of Week table is related to the same Order Date column used by
Date.

Please note that we created the new Day of Week table using all the



dates in Date to create the relationship with the existing Sales[Order
Date] column. It is possible to obtain the same behavior by creating
a table with only seven values (Sunday through Saturday), but that
choice requires an additional column in the Sales table – thus
consuming more memory for the data model.

Slicing by Day of Week in the newly created table is compatible with
any time intelligence calculation and respects any filter on the Day of
Week table; this is because the two filters (Date and Day of the week)
belong to two different tables.

The additional table could consolidate any set of attributes required
by specific business rules. We built an example with the day of the
week, but you can use any other set of attributes (like working days,
holidays, seasons), provided that such attributes depend on Order
Date.



CHAPTER 3

Month-related calculations

Download sample files: https://sql.bi/dax-202

This pattern describes how to compute month-related calculations
such as year-to-date, same period last year, and percentage growth
using a month granularity. This pattern does not rely on DAX built-in
time intelligence functions.

You can use the Month-related calculations pattern if the analysis
over sales is executed at the month level (or above) only. In other
words, the formulas stop working if you drill down to the date level.
Because the pattern does not use real dates to link to sales, you can
also implement fiscal calendars with 13 months and any non-
standard time-related calculation – provided that the maximum level
of detail of the reports is the month and not weeks or days. The
report cannot filter or group by week, day of week, or working days;
despite the fact that the granularity of the Date table can be at the
date level, these columns must not be part of the Date table because
they are not compatible with the formulas in this pattern.

The Month-related calculations pattern is useful to create simple

https://sql.bi/dax-202


formulas and optimal performance in all those cases where the day
granularity is not required. Moreover, this is the only pattern that
allows the creation of additional months, like a 13th virtual month for
a fiscal year that contains year-end adjustments in accounting
systems. If you manage time-related calculations over time periods
based on months and you need the day granularity, consider using
the Custom time-related calculations pattern. If you manage time-
related calculations over time periods based on weeks, consider
using the Week-related calculations pattern.

Introduction to month-related time
intelligence calculations

The time intelligence calculations in this pattern modify the filter
context over the Date table to obtain the result. The formulas are
designed to apply filters at the month granularity to improve query
performance, regardless of the cardinality of the Date table. For
example, many calculations modify the filter context at the month
level instead of the individual dates. This technique reduces the cost
of computing the new filter and applying it to the filter context. This
optimization is especially useful when using DirectQuery, even
though it also improves performance on models imported in memory.

The pattern does not rely on the standard time intelligence
functions; therefore, the Date table does not have the requirements
needed for standard DAX time intelligence functions. The formulas
are identical whether you have one row for each month or one row
for each day.

If the Date table has a Date column, the Mark as Date Table setting
is allowed but not required. The formulas in this pattern do not rely
on the automatic REMOVEFILTERS applied over the Date table
when the Date column is filtered. Instead, all the formulas use a



specific REMOVEFILTERS over the Date table to get rid of the
existing filters, in turn replacing them with the minimal number of
filters that guarantee the desired result.

Building a Date table
The Date table used for month-related calculations can be built in
many ways. The requirement for the pattern is to expose columns
related to the months and any aggregation over months, such as
quarters and years. The months could be different from those
defined in the standard Gregorian calendar, as is the case when a
13th month is required. The sample files available for this pattern
include four different scenarios for the Date table:

1. One row for each date based on the Gregorian calendar,
using Date as the primary key. In this case, the behavior is
close to the standard time intelligence calculations, with
the noticeable difference that the formulas are faster.

2. One row for each month based on the Gregorian calendar,
using Year Month Number as the primary key. This pattern is
even better than the previous one, because the date table
is significantly smaller.

3. One row for each month in an accounting calendar with 13
fiscal months, where the 13th fiscal month is projected as
an additional month in the Gregorian calendar between the
last month of a fiscal year and the first month of the
following fiscal year. Performance is close to that of the
second pattern.

4. One row for each month in an accounting calendar with 13
fiscal months, where the 13th fiscal month is projected in
the last fiscal month on the Gregorian calendar.



Performance and behavior are very close to what is
observed in the third example.

In case there is one row for each month in the Date table, you
should not use a date to link the Sales and Date tables – unless you
use specific dates to identify each month. For example, December 1
for December and December 31 for the 13th month of the year.

The Date table in this pattern must have all the months included in
the range between the first and the last date referenced in the Sales
table. Therefore, if the last sale was processed in August 2009, the
last month in the Date table must be August 2009. This requirement
is different from the requirement of the standard time-intelligence
functions in DAX, where all the months of a year must be present in
the Date table to guarantee the correct behavior.

If you already have a Date table, you can import the table and use it
by showing only the columns required for this pattern while hiding
columns with a day or week granularity. If a Date table is not
available, you can create one using a DAX calculated table. As an
example, the following DAX expression defines the Date table used
in the first three scenarios described earlier:

Calculated table







You can customize the first two variables to build a Date table that
meets specific business requirements. The FirstFiscalMonth variable
defines the first fiscal month in the year, and the MonthsInYear
variable defines the number of months for each fiscal year. The other
customization is the first argument of GENERATE, which can be:

GranularityByMonth to generate one row for each month;

GranularityByDate to generate one row for each date.

The GranularityByDate argument is used in the first scenario (one
row for every date), whereas GranularityByMonth is used in the other
three scenarios (one row for every month). The Year Month column
has one value for each month; the month description is the same for
both the fiscal and Gregorian calendar hierarchies. The fourth
scenario includes a few additional columns to get a different value
between Month and Fiscal Month. This is required to manage the 13th

month differently, depending on the hierarchy.

In order to obtain the correct visualization, the calendar columns
must be configured in the data model as follows. For each column
we show the data type followed by a sample value assuming a fiscal
month starting in March where there are 12 months in the fiscal year:

Date: Date, Hidden (8/14/2007), used only for the first scenario

Year Month Key: Whole Number, Hidden (200708), used to
define relationships

Year Month: Text (Aug 2007)

Year Quarter: Text (Q3-2007)

Year Quarter Number: Whole Number, Hidden (8030)

Quarter: Text (Q3)



Year Month Number: Whole Number, Hidden (24091)

Month: Text (Aug)

Month Number: Whole Number, Hidden (8)

Month In Quarter Number: Whole Number, Hidden (2)

Fiscal Month: Text (Aug)

Fiscal Month Number: Whole Number, Hidden (6)

Fiscal Month in Quarter Number: Whole Number, Hidden (3)

Fiscal Year: Text (FY 2008)

Fiscal Year Number: Whole Number, Hidden (2008)

Fiscal Year Quarter: Text (FQ2-2008)

Fiscal Year Quarter Number: Whole Number, Hidden (8033)

Fiscal Quarter: Text (FQ2)

The Date table in this pattern has four hierarchies:

Fiscal Year-Quarter: Year (Fiscal Year), Quarter (Fiscal Year
Quarter), Month (Year Month)

Fiscal Year-Month: Year (Fiscal Year), Month (Year Month)

Year-Quarter: Year (Year), Quarter (Year Quarter), Month (Year
Month)

Year-Month: Year (Year), Month (Year Month)

Several columns serve the only purpose of simplifying the formulas
used in custom time-related calculations. The Year Month Key column
is only used to define a relationship with the Sales table using an
integer in the format YYYYMM. This numeric format to identify a
month is common in many data sources that manage data at the
month granularity.



The Date table has only the range of months required by the data
available. For example, in the example the Date table includes only
the months from March 2007 to August 2009. This pattern does not
come with the constraint of including all the months in one year. For
this reason, there is no need for additional calculated columns like
the DateWithSales used in the Standard time-related calculations
pattern.

Naming convention
This section describes the naming convention we adopted to
reference the time intelligence calculations. A simple categorization
shows whether a calculation:

shifts over a period of time, for example the same period in the
previous year;

performs an aggregation, for example year-to-date; or

compares two time periods, for example this year compared to
last year.



Computing period-to-date totals
The year-to-date, quarter-to-date, and month-to-date calculations
modify the filter context for the Date table, so to include the dates
from the beginning of the period to the currently selected month.

Year-to-date total
The year-to-date aggregates data starting from the first day of the
year, as shown in Figure 3-1.



FIGURE 3-1 Sales YTD shows the aggregated value from the beginning of the year, whereas
Sales Fiscal YTD aggregates the value starting from the beginning of the fiscal year.

The year-to-date total of a measure filters all the months that are in
the year of the last date available in the filter context, and whose
month is less than or equal to the month of that date:

Measure in the Sales table



If the report uses a hierarchy based on the fiscal year, then the
measure must filter the corresponding columns with the word
“Fiscal” before the acronym identifying the time intelligence
calculation. For example, the Sales Fiscal YTD measure uses Fiscal
Year Number instead of Year; however, it does not change the filter
over Year Month Number because that column is identical for both
fiscal and calendar hierarchies:

Measure in the Sales table



Quarter-to-date total
The quarter to date aggregates data from the first month of the fiscal
quarter, as shown in Figure 3-2.

FIGURE 3-2 Sales QTD shows the quarter-to-date amount, which is the value of the last
quarter available at the year level.



The quarter-to-date total of a measure is computed with the
technique used for the year-to-date total. The only difference is that
the filter is now on Year Quarter Number instead of Year:

Measure in the Sales table

Computing period-over-period growth
A common requirement is to compare a time period with the same
time period in the previous year, quarter, or month. In order to
achieve a fair comparison, the measure takes into account the same
relative months in the previous year, or the same relative months in
the previous quarter.

Year-over-year growth
Year-over-year compares a time period to its equivalent in the
previous year. In this example, data is available until August 2009.
For this reason, Sales PY shows numbers related to the year 2009
considering transactions only from before August 2008. Figure 3-3
shows that the Sales Amount of 2008 is 9,927,582.99, whereas Sales
PY for 2009 returns 6,166,534.30 because the measure involves



sales only up to August 2008.

FIGURE 3-3 For the year 2009, Sales PY shows the amount from January to August 2008,
because there is no data after August 2009.

Sales PY removes all the filters from the Date table; it filters the Year
column by using the previous year, and by using VALUES it retrieves
the months visible in the current filter context to then filter the Month
Number column. The Date table must hold only the months with
sales, instead of holding all the months of the year as required by
the standard time intelligence functions in DAX. This way, any direct
or indirect selection of months is applied to the previous year:

Measure in the Sales table



Year-over-year growth is computed as an amount in Sales YOY, and
as a percentage in Sales YOY %. Both measures use Sales PY to take
into account dates only up to August 2009:

Measure in the Sales table

Measure in the Sales table



Quarter-over-quarter growth
Quarter-over-quarter compares a time period to its equivalent in the
previous quarter. In this example, data is available until August 2009.
For this reason, Sales PQ shows numbers related to Q3-2009
considering only transactions before the second month of Q2-2009.
Figure 3-4 shows that the Sales Amount of Q2-2009 is 2,618,644.64,
whereas Sales PY for Q3-2009 returns 1,746,058.45. This is because
the measure takes into account the sales of only the first two months
of Q2-2009.

FIGURE 3-4 For Q3-2009, Sales PQ shows the sum of Apr 2009 and May 2009, because
there are only two months in Q3-2009 to be compared to Q2-2009.

Sales PQ removes all the filters from the Date table; it filters the Year
Quarter Number column using the previous quarter, and with VALUES
which retrieves the months visible in the filter context it filters the
Month In Quarter Number column. This way, any direct or indirect
selection of months is applied to the previous quarter:



Measure in the Sales table

Quarter-over-quarter growth is computed as an amount in Sales
QOQ and as a percentage in Sales QOQ %. Both measures use Sales
PQ to guarantee a fair comparison:

Measure in the Sales table

Measure in the Sales table



Month-over-month growth
Month-over-month compares a time period to its equivalent in the
previous month. Figure 3-5 shows that Sales PM always corresponds
to the Sales Amount of the previous month and does not produce any
result at the quarter and at the year levels (only the year level is
visible in Figure 3-5).

FIGURE 3-5 Sales PM always corresponds to the Sales Amount of the previous month.

Sales PM removes all the filters from the Date table and only filters



the Year Month Number column using the previous month:

Measure in the Sales table

The month-over-month growth is computed as an amount in Sales
MOM and as a percentage in Sales MOM %:

Measure in the Sales table

Measure in the Sales table

Period-over-period growth



Period-over-period growth automatically selects one of the measures
previously described in this section based on the current selection in
the visualization. For example, it returns the value of month-over-
month growth measures if the visualization displays data at the
month level, but switches to year-over-year growth measures if the
visualization shows the total at the year level. The result you would
expect is visible in Figure 3-6.



FIGURE 3-6 Sales PP shows the value of the previous month at the month level, of the
previous quarter at the quarter level, and of the previous year at the year level.

The three measures Sales PP, Sales POP, and Sales POP % redirect
the evaluation to the corresponding year, quarter, and month
measures depending on the level selected in the report. The
ISINSCOPE function detects the level used in the report. The
arguments passed to ISINSCOPE are the attributes used in the rows
of the Matrix visual from Figure 3-6. The measures are defined as
follows:

Measure in the Sales table

Measure in the Sales table

Measure in the Sales table



Computing period-to-date growth
The growth of a “to-date” measure is the comparison of said “to-
date” measure with the same measure over an equivalent time
period with a specific offset. For example, you can compare a year-
to-date aggregation against the year-to-date in the previous year,
that is with an offset of one year.

All the measures in this set of calculations take care of partial
periods. Because data is available only until August 2009 in our
example, the measures make sure the previous year does not report
dates after August 2008.

Year-over-year-to-date growth
Year-over-year-to-date growth compares the year-to-date at a
specific date with the year-to-date in an equivalent month in the
previous year. Figure 3-7 shows that Sales PYTD in 2009 is taking
into account transactions only until August 2008. For this reason,
Sales YTD of Q3-2008 is 7,129,971.53, whereas Sales PYTD for Q3-
2009 is less: 6,166,534.30.



FIGURE 3-7 For Q3-2009, Sales PYTD shows the amount of July-August 2008 because
there is no data after August 2009.

Sales PYTD filters the previous value in Year and all the months in
the year less than or equal to the last month visible in the filter
context:

Measure in the Sales table



Sales YOYTD and Sales YOYTD % rely on Sales PYTD to provide their
result:

Measure in the Sales table

Measure in the Sales table



Quarter-over-quarter-to-date growth
Quarter-over-quarter-to-date growth compares the quarter-to-date at
a specific date with the quarter-to-date at an equivalent month in the
previous quarter. Figure 3-8 shows that Sales PQTD in 2009 is taking
into account transactions only until May 2009, which is the second
month in the quarter. For this reason, Sales QTD of Q2-2009 is
2,618,644.64, whereas Sales PQTD for Q3-2009 is less:
1,746,058.45.

FIGURE 3-8 Sales PQTD shows for Q3-2009 the amount of the period April-May 2009,
because there is no data after August 2009.

Sales PQTD filters the previous value in Year Quarter Number, and
through Month In Quarter Number filters all the months in the quarter
less than or equal to the last relative month of the quarter visible in
the filter context:

Measure in the Sales table



Sales QOQTD and Sales QOQTD % rely on Sales PQTD to guarantee
a fair comparison:

Measure in the Sales table

Measure in the Sales table



Comparing period-to-date with a
previous full period

Comparing a to-date aggregation with the previous full period is
useful when you consider the previous period as a benchmark. Once
the current year-to-date reaches 100% of the full previous year, this
means we have reached the performance of the previous full period
– hopefully in fewer days.

Year-to-date over the full previous
year
As the name indicates, the year-to-date over the full previous year
compares the year-to-date against the entire previous year. Figure 3-
9 shows that in November 2008 (which is close to the end of the
year 2008) Sales YTD almost reached the value of Sales Amount for
the entire year 2007. Sales YTDOPY % provides an immediate
comparison of the year-to-date with the total of the previous year; it
shows growth over the previous year when the percentage is
positive, which is the case in December 2008.



FIGURE 3-9 Sales YTDOPY % shows a negative value corresponding to the missing
percentage of Sales YTD to reach the total Sales Amount of the previous year.

The year-to-date-over-previous-year growth is computed by using
the Sales YTDOPY and Sales YTDOPY % measures; these in turn rely
on the Sales YTD measure to compute the year-to-date value, and on
the Sales PYC measure to get the sales amount of the entire previous
year:

Measure in the Sales table

Measure in the Sales table

Measure in the Sales table



Quarter-to-date over full previous
quarter
As the name indicates, the quarter-to-date over the full previous
quarter compares the quarter-to-date against the entire previous
quarter. Figure 3-10 shows that in May 2009, Sales QTD exceeded
the value of Sales Amount for the entire previous quarter (Q1-2009).
Sales QTDOPQ% provides an immediate comparison of the quarter-
to-date with the total of the previous quarter; it shows growth over
the previous quarter when the percentage is positive, which is the
case in May and June 2009.

FIGURE 3-10 Sales QTDOPQ % shows a positive percentage in May 2009 and June 2009,
when Sales QTD starts to be greater than the Sales Amount for Q1-2009.



The quarter-to-date-over-previous-quarter growth is computed by
using the Sales QTDOPQ and Sales QTDOPQ % measures; these in
turn rely on the Sales QTD measure to compute the quarter-to-date
value and on the Sales PQC measure to get the sales amount of the
entire previous quarter:

Measure in the Sales table

Measure in the Sales table

Measure in the Sales table



Using moving annual total calculations
A common way to aggregate data over several months is by using
the moving annual total instead of the year-to-date. The moving
annual total includes the last 12 months of data. For example, the
moving annual total for March 2009 includes data from April 2008 to
March 2009.

Moving annual total
Sales MAT computes the moving annual total, as shown in Figure 3-
11.



FIGURE 3-11 Sales MAT in March 2009 aggregates Sales Amount from April 2008 to March
2009.

The Sales MAT measure defines a range over the Year Month
Number column that includes the months of one complete year from
the last month in the filter context:

Measure in the Sales table



Moving annual total growth
The moving annual total growth is computed by using the Sales
PYMAT, Sales MATG, and Sales MATG % measures, which in turn rely
on the Sales MAT measure. The Sales MAT measure starts to provide
accurate values one year after the first sale ever – once it has been
able to collect one full year of data – and it is not protected in case
the current time period is shorter than a full year.

For example, the amount for the year 2009 of Sales PYMAT is
9,927,582.99, which corresponds to the Sales Amount of the entire
year 2008 as shown in Figure 3-11 (see previous section). When
compared with sales in 2009, this produces a comparison of 8
months – data being only available until August 2009 – with the
whole year 2008. Similarly, you can see that Sales MATG % starts in
March 2008 with very high values and stabilizes after a year. This
behavior is by design: the moving annual total is usually computed at
the month granularity to show trends in a chart.

The measures are defined as follows:



Measure in the Sales table

Measure in the Sales table

Measure in the Sales table



Moving averages
The moving average is typically used to display trends in line charts.
Figure 3-12 includes the moving average of three months (Sales AVG
3M) and a year (Sales AVG 1Y).

FIGURE 3-12 Sales AVG 3M and Sales AVG 1Y show the moving average over three months
and one year, respectively.

Moving average 3 months
The Sales AVG 3M measure computes the moving average over three
months by iterating the last three months obtained in the Period3M
variable:



Measure in the Sales table

Moving average 1 year
The Sales AVG 1Y measure computes the moving average over one
year by iterating the last 12 months stored in the Period1Y variable:

Measure in the Sales table



Managing years with more than 12
months

As we stated in the introduction, this pattern works even in scenarios
where one year contains more than 12 months. For example,
accounting oftentimes requires a 13th month containing the year-end
adjustments. In these scenarios, it is important to set the values in
the Date table correctly. Specifically, the Year Month Number column
must store a sequential number for each month of the year;
therefore, the same month in the previous year can be obtained by



just subtracting 13 from the value of the current month if the year
contains 13 months.

Moreover, you need to pay attention to the content of the Month and
Year Month columns. Indeed, these columns must contain a proper
name for the 13th month, and that choice depends on how you plan
to show the month in both the fiscal and Gregorian calendars.

If the report shows only the fiscal year, you can choose any name
and you will always show 13 months. If you need to show both fiscal
and Gregorian calendar hierarchies, then you should decide
between the following options: you can show the 13th month as a
separate month in the Gregorian calendar; or you can decide to
merge it under the corresponding Gregorian month, which means
you are still showing 12 months when displaying the Gregorian
calendar.

For example, Figure 3-13 shows the 13th month named “M13”. Its
position is right after June, because the fiscal calendar ends in June.
The month is visible both in the fiscal and in the Gregorian
calendars.



FIGURE 3-13 13 fiscal months and 13 calendar months.

Figure 3-14 shows the result of a different choice, where the 13th

month is visible only in the fiscal calendar. When the report is being
browsed by the Gregorian calendar, the value of the 13th month is
merged with that of June. Therefore, the Gregorian calendar is still
showing 12 months.



FIGURE 3-14 13 fiscal months and 12 calendar months.

If you want to merge June with the 13th month as shown on the left
side of Figure 3-14, then you must assign the proper values to the
columns in the Date table; it is then no longer possible to share the
same columns for both fiscal and Gregorian calendars. The columns
for the fiscal calendar must differentiate between the 12th and 13th

months, whereas the columns for the Gregorian calendar will share
the values for the month name and number. Therefore, the Date
table still contains 13 months, but two of them share the same
values in the Gregorian set of columns. By doing so, the report
merges rows with the same value in the months columns and the
user obtains the desired result.

You can find the set of values for the figures shown in this section
in the demo files ”Month-related calculations - 13 Fiscal and 13
Calendar Months.pbix” and ”Month-related calculations - 13 Fiscal and
12 Calendar Months.pbix”, respectively, where the Year Month, Year
Month Number, Month, and Month Number columns for the Gregorian



calendar have corresponding Fiscal Year Month, Fiscal Year Month
Number, Fiscal Month, and Fiscal Month Number columns for the fiscal
calendar.





CHAPTER 4

Week-related calculations

Download sample files: https://sql.bi/dax-203

This pattern describes how to compute week-related calculations,
such as year-to-date, same period last year, and percentage growth
using a week granularity. This pattern does not rely on DAX built-in
time intelligence functions. All the measures refer to the fiscal
calendar because the nature of a calendar based on weeks is not
compatible with the definition of months in a regular Gregorian
calendar. You can use the Standard time-related calculations pattern
for time-related calculations based on a Gregorian calendar.

Every time a fiscal calendar is based on weeks, this pattern should
be used instead of other patterns based on calendar months. There
are many different standards adopted worldwide to define a week-
based calendar. The assumptions in this pattern are:

Every year is a set of complete weeks;

Every period within the year (quarter, month) is a set of
complete weeks;

https://sql.bi/dax-203


The fiscal year always starts on the same day of the week, so
it does not always start on January 1.

The fiscal month and the fiscal quarter always start on the
same day of the week, so they do not always start on the first
day of a month.

Introduction to week-related time
intelligence calculations

The time intelligence calculations in this pattern modify the filter
context over the Date table to obtain the result. The formulas are
designed to apply filters at a granularity corresponding to the
calculation requirements, without removing filters applied to
attributes like working day and day of week; this is so that the report
granularity is not limited by the implementation of the pattern.

The pattern does not rely on the standard time intelligence
functions. Therefore, the Date table does not have the requirements
needed for standard DAX time intelligence functions. The formulas
are identical whether you have one row for each week or one row for
each day. The examples contain one row for each day, in order to
create a relationship with the Sales table through the Sales[Order
Date] column.

If there is a Date column in the Date table, the Mark as a Date Table
setting is allowed but not required. The formulas in this pattern do
not rely on the automatic REMOVEFILTERS being applied over the
Date table when the Date column is filtered. Instead, all the formulas
use a specific REMOVEFILTERS over the Date table to get rid of the
existing filters, replacing them with the minimum number of filters
that guarantee the result.



Building a Date table
The Date table used for week-related calculations must include the
right definition of all the fiscal periods required – quarter, month,
week. The requirement for the pattern is to expose columns related
to the week and any aggregation over weeks, such as quarters and
years. The months could be different from those defined in the
standard Gregorian calendar, as it happens when you have a 4-4-5
calendar like the one used in the example.

If you already have a Date table, you can import the table – but
make sure you have the columns required for this pattern, adding
them to the Date table if necessary. If a Date table is not available,
you can create one using a DAX calculated table. The Date table
included in the example dynamically creates a 4-4-5 calendar based
on the ISO 8601 definition of weeks in a Gregorian calendar.

The first rows of the formula for the Date calculated table included
in the example define the type of week-based table to create in
specific variables. For example, these are the parameters used for a
4-4-5 calendar starting in January of each year, although the first day
of the fiscal year could be in December of the previous calendar
year:

Calculated table



We suggest you read the comments included in the Date calculated
table in the example to find whether it works with your specific
requirements. However, if you already have a Date table in your data
model, you should just make sure to include the columns described
in the following paragraphs.

In order to obtain the correct visualization, the calendar columns
must be configured in the data model as follows. For each column
you can see the data type followed by a sample value:

Date: Date, m/dd/yyyy (8/14/2007), used as a column to mark
as date table, which is optional

Sequential Day Number: Whole Number, Hidden (40040) , same
value of Date as integer

Fiscal Year: Text (FY 2007)

Fiscal Year Number: Whole Number, Hidden (2007)

Fiscal Quarter: Text (FQ3)

Fiscal Quarter Number: Whole Number, Hidden (3)

Fiscal Year Quarter: Text (FQ3-2007)

Fiscal Year Quarter Number: Whole Number, Hidden (8030)

Fiscal Week: Text (FW33)

Fiscal Week Number: Whole Number, Hidden (33)

Fiscal Year Week: Text (FW33-2007)

Fiscal Year Week Number: Whole Number, Hidden (5564)

Fiscal Month: Text (FM Aug)

Fiscal Month Number: Whole Number, Hidden (8)

Fiscal Year Month: Text (FM Aug 2007)

Fiscal Year Month Number: Whole Number, Hidden (24091)



Day of Fiscal Month Number: Whole Number, Hidden (17)

Day of Fiscal Quarter Number: Whole Number, Hidden (45)

Day of Fiscal Year Number: Whole Number, Hidden (227)

We want to introduce the concept of filter-safe columns. In a table,
there are columns whose filters need to be preserved. The filters
over filter-safe columns are not altered by the time intelligence
calculations. They will be affecting the calculations presented in this
pattern. The filter-safe columns in our sample table are the following:

Day of Week: ddd (Tue)

Day of Week Number: Whole Number, Hidden (6)

Working Day: Text (Working Day)

We provide a more in-depth description of the behavior of filter-safe
columns in the next section.

The Date table in this pattern contains several hierarchies:

Year-Month-Week: Year (Fiscal Year), Month (Fiscal Year
Month), Week (Fiscal Year Week)

Year-Quarter-Month-Week: Year (Fiscal Year), Quarter (Fiscal
Year Quarter), Month (Fiscal Year Month), Week (Fiscal Year
Week)

Year-Quarter-Week: Year (Fiscal Year), Quarter (Fiscal Year
Quarter), Week (Fiscal Year Week)

Year- Week: Year (Fiscal Year), Week (Fiscal Year Week)

The columns are designed to simplify the formulas. For example,
the Day of Fiscal Year Number column contains the number of days



since the beginning of the fiscal year; this number makes it easier to
find a corresponding range of dates in the previous year.

The Date table must also include a hidden DateWithSales calculated
column, used by some of the formulas of this pattern:

Calculated column in the Date table

The Date[DateWithSales] column is TRUE if the date is on or before
the last date with sales; it is FALSE otherwise. In other words,
DateWithSales is TRUE for “past” dates and FALSE for “future” dates,
where “past” and “future” are relative to the last date with sales.

In case you import a Date table, you want to create columns that
are similar to the ones we describe in this pattern, in that they should
behave the same way.

Understanding filter-safe columns
The Date table contains two types of columns: regular columns and

filter-safe columns. The regular columns are worked on by the
measures shown in this pattern. The filters over filter-safe columns
are always preserved and never altered by the measures of this
pattern. An example clarifies this distinction.

The Year Quarter Number column is a regular column: the formulas
in this pattern have the option of changing its value during their
computation. To compute the previous quarter, the formulas change
the filter context by subtracting one to the value of Year Quarter
Number in the filter context. Conversely, the Day of Week column is a
filter-safe column. If a user filters Monday to Friday, the formulas do
not alter that filter on the day of the week. Therefore, a previous-



quarter measure keeps the filter on the day of the week, and
replaces only the filter on calendar columns such as year, month,
and date.

To implement this pattern, you must identify which columns need to
be treated as filter-safe columns, because filter-safe columns require
special handling. The following is the classification of the columns
used in the Date table of this pattern:

Calendar columns: Date, Fiscal Year, Fiscal Year Number, Fiscal
Quarter, Fiscal Quarter Number, Fiscal Year Quarter, Fiscal Year
Quarter Number, Fiscal Week, Fiscal Week Number, Fiscal Year
Week, Fiscal Year Week Number, Fiscal Month, Fiscal Month
Number, Fiscal Year Month, Fiscal Year Month Number, Day of
Fiscal Month Number, Day of Fiscal Quarter Number, Day of
Fiscal Year Number.

Filter-safe columns: Day of Week, Day of Week Number, Working
Day.

The special handling of filter-safe columns revolves around the filter
context. Every measure in this pattern manipulates the filter context
by replacing filters over all the calendar columns, without altering
any filter applied to the filter-safe columns. In other words, every
measure follows two rules:

Remove filters on calendar columns;

Do not alter filters on filter-safe columns.

The ALLEXCEPT function can implement these requirements if the
user specifies the Date table in the first argument, and the filter-safe
columns in the following arguments:



If the Date table did not have any filter-safe column, the filters could
be removed by using REMOVEFILTERS over the Date table instead
of ALLEXCEPT:

If your Date table does not contain any filter-safe column, then you
can use REMOVEFILTERS instead of ALLEXCEPT in all the
measures of this pattern. We provide a complete scenario that
includes filter-safe columns. Whenever possible, you can simplify it.

While the ALLEXCEPT should include all the filter-safe columns,
we skip strictly those hidden filter-safe columns used only to sort
other columns. For example, we do not include Day of Week Number,
which is a hidden column used to sort the Day of Week column. The
assumption is that the user never applies filters on hidden columns;
if this assumption is not true, then the hidden filter-safe columns
must also be included in the arguments of ALLEXCEPT. You can find
an example of the impact of using REMOVEFILTERS vs.
ALLEXCEPT in the Year-to-date total section of this pattern.

Controlling the visualization in future
dates



Most of the time intelligence calculations should not display values
for dates after the last available date. For example, a year-to-date
calculation can also show values for future dates, but we want to
hide those values. The dataset used in these examples ends on
August 15, 2009. Therefore, we consider the fiscal month FM August
2009, the third fiscal quarter of 2009 FQ3-2009, and the fiscal year
FY 2009 to be the last periods with data. Any date after August 15,
2019 is considered as future, and we want to hide values there.

In order to avoid showing results in future dates, we use the
following ShowValueForDates measure. ShowValueForDates returns
TRUE if the period selected is earlier than the last period with data:

Measure (hidden) in the Date table

The ShowValueForDates measure is hidden. It is a technical
measure created to reuse the same logic in many different time-
related calculations, and the user should not use ShowValueForDates
directly in a report. The REMOVEFILTERS function removes the
filter from any table in the model, because the purpose is to retrieve
the last date used in the Sales table regardless of any filter.



Naming convention
This section describes the naming convention we adopted to
reference the time intelligence calculations. A simple categorization
shows whether a calculation:

shifts over a period of time, for example the same period in the
previous year;

performs an aggregation, for example year-to-date; or

compares two time periods, for example this year compared to
last year.



Computing period-to-date totals
The year-to-date, quarter-to-date, month-to-date, and week-to-date
calculations modify the filter context for the Date table, showing the
values from the beginning of the period up to the last date available
in the filter context.



Year-to-date total
The year-to-date aggregates data starting from the first day of the
fiscal year, as shown in Figure 4-1.

FIGURE 4-1 Sales YTD (simple) shows the value for any time period, whereas Sales YTD
hides the result after the last period with data.



The measure filters all the days less than or equal to the last day
visible in the last fiscal year. It also filters the last visible Fiscal Year
Number:

Measure in the Sales table

Because LastDayAvailable contains the last date visible in the filter
context, Sales YTD (simple) shows data even for future dates in the
year. We can avoid this behavior in the Sales YTD measure by
returning a result only when ShowValueForDates returns TRUE:

Measure in the Sales table



ALLEXCEPT is required to preserve the filter-safe columns Working
Day or Day of Week in case they are used in the report. To
demonstrate this, we purposely created an incorrect measure: Sales
YTD (wrong), which removes the filters from the Date table by using
REMOVEFILTERS instead of ALLEXCEPT. By doing this, the
formula loses the filter on Working Day used in the columns of the
matrix, thus producing an incorrect result:

Measure in the Sales table

Figure 4-2 shows the comparison of the correct and incorrect
measures.



FIGURE 4-2 Sales YTD (wrong) shows Sales YTD calculated by ignoring the filter over Working
Day.

The Sales YTD (wrong) measure would work well if the Date table did
not contain any filter-safe columns. The presence of filter-safe
columns requires using ALLEXCEPT instead of REMOVEFILTERS.
We used Sales YTD as an example, but the same concept is valid for
all the other measures in this pattern.

Quarter-to-date total
Quarter-to-date aggregates data from the first day of the fiscal
quarter, as shown in Figure 4-3.



FIGURE 4-3 Sales QTD shows the quarter-to-date amount, which is blank for FY 2009
because there is no data in FQ4-2009.

Quarter-to-date is computed with the same technique as the one
we used for the year-to-date total. The only differences are the filters
on Fiscal Year Quarter Number instead of Fiscal Year Number, and Day
of Fiscal Quarter Number instead of Day of Fiscal Year Number.

Measure in the Sales table



Month-to-date total
Month-to-date aggregates data starting from the first day of the fiscal
month, as shown in Figure 4-4.



FIGURE 4-4 Sales MTD shows the month-to-date amount, which is blank for FY 2009 and
FQ3-2009 because there is no data after August 15, 2009.

The month-to-date total is computed with a technique similar to
those used in year-to-date total and quarter-to-date total, which filter
all the days that are less than or equal to the last day visible in the



last fiscal month. The filters are applied to the Day of Month Number
and Year Month Number columns:

Measure in the Sales table

The measure filters Day of Fiscal Month Number instead of Day of
Fiscal Year Number. The reason is to filter a column with a lower
number of unique values, which is a best practice from a query
performance standpoint.

Week-to-date total
Week-to-date aggregates data from the first day of the week, as
shown in Figure 4-5.





FIGURE 4-5 Sales WTD shows the week-to-date amount, which is blank for FY 2009, FQ3-
2009, and FM Aug 2009 because there is no data after August 15, 2009.

The week-to-date total is computed with a technique similar to
those used in year-to-date total and quarter-to-date total, which
filters all the days that are less than or equal to the last weekday day
number visible in the last fiscal week. The filters are applied to the
Day of Week Number and Fiscal Year Week Number columns:

Measure in the Sales table

The measure filters Day of Week Number instead of Day of Fiscal Year
Number. This is to filter a column with a lower number of unique
values, which is a best practice from a query performance
standpoint.

Computing period-over-period growth
A common requirement is to compare a time period with the same
time period in the previous year, quarter, or week. We do not look at
the comparison over the previous month because in a 4-4-5
calendar there may be a different number of weeks within the
months. In order to achieve a fair comparison, the measure should



work with an equivalent period, also taking into account that the last
week/quarter/year could be incomplete. For these reasons, the
calculations shown in this section use the Date[DateWithSales]
calculated column, as described in the article, Hiding future dates for
calculations in DAX.

Year-over-year growth
Year-over-year compares a time period to the equivalent time period
in the previous year. In this example, data is available until August
15, 2009. For this reason, Sales PY shows numbers related to FY
2009 and takes into account only transactions before August 15,
2008. Figure 4-6 shows that Sales Amount of FQ3-2008 is
2,573,182.08, whereas Sales PY for FQ3-2009 returns 1,270,748.28
because the measure considers only sales up to August 15, 2008.

FIGURE 4-6 For FQ3-2009, Sales PY shows the amount of FQ3-2008 until August 15, 2008,
because there is no data after August 15, 2009.

Sales PY uses a standard technique that shifts the selection by the

https://www.sqlbi.com/articles/hiding-future-dates-for-calculations-in-dax/


number of months defined in the MonthsOffset variable. In Sales PY
the variable is set to 12, to move back in time by 12 months. The
next measures, Sales PQ and Sales PM, use the same code. The only
difference is the value assigned to MonthsOffset.

Sales PY iterates every year active in the filter context. For each
year, it retrieves the days selected in the year while ignoring the
filter-safe columns (Working Day, Day of Week and Day of Week Number
in our example). The days are evaluated using the relative day
number within the year. These days are applied as a filter on the
previous year. The filters over filter-safe columns are kept in the filter
context by using ALLEXCEPT:

Measure in the Sales table

The year-over-year growth is computed as an amount in Sales YOY
and as a percentage in Sales YOY %. Both measures use Sales PY to



take into account only dates up to August 15, 2009:

Measure in the Sales table

Measure in the Sales table

Quarter-over-quarter growth
Quarter-over-quarter compares a time period with the equivalent
time period in the previous quarter. In this example, data is available
until August 15, 2009, which is more than half of the third quarter of
FY 2009 – it is day 49 in that quarter. Therefore, Sales PQ for August
2009 – the second month of the third quarter – shows sales until
May 16, 2009, which is day 49 in the previous quarter, FQ2-2009.
Figure 4-7 shows that Sales Amount of FQ2-2009 is 2,531,034.28,
whereas Sales PQ for FQ3-2009 returns 1,140,186.77, restricted to



sales performed up to May 16, 2009.

FIGURE 4-7 For FQ3-2009, Sales PQ shows the values of FQ2-2009 until May 16, 2009;
indeed, there is no data after August 15, 2009, which sits at the same relative position in the
quarter (day 49).



Sales PQ uses the technique described for Sales PY. The only
difference is that instead of iterating Fiscal Year Number, it iterates
Fiscal Year Quarter Number and applies the filter over Day of Fiscal
Quarter Number instead of over Day of Fiscal Year Number:

Measure in the Sales table

The quarter-over-quarter growth is computed as an amount in Sales
QOQ and as a percentage in Sales QOQ %. Both measures use Sales
PQ to guarantee a fair comparison:

Measure in the Sales table



Measure in the Sales table

Week-over-week growth
Week-over-week compares a time period with its equivalent in the
previous week. The calculation is similar to year-over-year and
quarter-over-quarter growth, even though the data available does
not show a specific example of a partial week corresponding to the
last day available (August 15, 2019). The Sales PW measure sums all
the weeks of the period shifted back by one week if the report
aggregates more weeks, like at the year and quarter level. Figure 4-
8 shows an example of the result.



FIGURE 4-8 The Sales PW measure shows the Sales Amount of the previous week.

Sales PW uses the technique described for Sales PY. The only
difference is that instead of iterating Fiscal Year Number, it iterates
Fiscal Year Week Number and applies the filter over Day of Week
Number instead of over Day of Fiscal Year Number:

Measure in the Sales table



The week-over-week growth is computed as an amount in Sales
WOW and as a percentage in Sales WOW %. Both measures use
Sales PW to guarantee a fair comparison:

Measure in the Sales table

Measure in the Sales table



Period-over-period growth
Period-over-period growth automatically selects one of the measures
described earlier in this section based on the current selection of the
visualization. For example, it returns the value of week-over-week
growth measures if the visualization displays data at the week level,
and switches to quarter-over-quarter or year-over-year growth
measures if the visualization shows the total at the quarter or year
level, respectively. The month level is not supported on a 4-4-5
calendar. The expected result is visible in Figure 4-9.



FIGURE 4-9 Sales PP shows the value of the previous week at the week level, of the
previous quarter at the quarter level, and of the previous year at the year level.

The three measures Sales PP, Sales POP, and Sales POP % redirect
the evaluation to the corresponding year, quarter, and week
measures depending on the level selected in the report. ISINSCOPE
detects the level used in the report. The arguments passed to
ISINSCOPE are the attributes used in the rows of the Matrix visual in
Figure 4-9. The measures are defined as follows:

Measure in the Sales table



Measure in the Sales table

Measure in the Sales table

Computing period-to-date growth
The growth of a “to-date” measure is the comparison of the “to-date”
measure with the same measure over an equivalent time period with
a specific offset. For example, you can compare a year-to-date



aggregation against the year-to-date in the previous fiscal year, that
is with an offset of one fiscal year.

All the measures in this set of calculations take care of partial
periods. Because data is available only until August 15, 2009 in our
example, the measures make sure the previous year does not report
dates after August 15, 2008.

Year-over-year-to-date growth
Year-over-year-to-date growth compares the year-to-date on a
specific date with the year-to-date on an equivalent date in the
previous year. Figure 4-10 shows that Sales PYTD in FY 2009 is
considering only sales until August 16, 2008, because it is the same
relative day within FY 2008 as is August 15, 2009 for FY 2009. For
this reason, Sales YTD of FQ3-2008 is 7,124,371.27, whereas Sales
PYTD for FQ3-2009 is less: 5,821,937.47.

FIGURE 4-10 For FQ3-2009, Sales PYTD shows the amount of the days in FQ3-2008 until
August 16, 2008 because there is no data after August 15, 2009.



Sales PYTD is like Sales YTD: it filters the previous value in Fiscal
Year Number instead of the last year visible in the filter context. The
main difference is the evaluation of LastDayOfFiscalYearAvailable,
which must consider only dates with sales while ignoring the filter on
filter-safe columns, which are considered in the evaluation of Sales
Amount:

Measure in the Sales table

Sales YOYTD and Sales YOYTD % rely on Sales PYTD to guarantee a
fair comparison:

Measure in the Sales table



Measure in the Sales table

Quarter-over-quarter-to-date growth
Quarter-over-quarter-to-date growth compares the quarter-to-date
on a specific date with the quarter-to-date on an equivalent date in
the previous quarter. Figure 4-11 shows that Sales PQTD in FW
August 2009 is considering only transactions that occurred prior to
May 16, 2009, to get the corresponding part of the previous quarter.
For this reason Sales QTD of FW May 2009 is 1,411,541.99, whereas
Sales PQTD for FW August 2009 is lower: 1,140,186.77.



FIGURE 4-11 For Aug 2009, Sales PQTD shows the amount for March 29-May 16, 2009,
because there is no data after August 15, 2009. The comparison only uses the first 49 days
of the quarter.

Sales PQTD is like Sales QTD; it filters the previous value in Fiscal
Year Quarter Number instead of the last quarter visible in the filter
context. The main difference is the evaluation of
LastDayOfFiscalYearQuarterAvailable, which must consider only dates
with sales while ignoring the filter on filter-safe columns, which are
considered in the evaluation of Sales Amount:

Measure in the Sales table



Sales QOQTD and Sales QOQTD % rely on Sales PQTD to guarantee
a fair comparison:

Measure in the Sales table

Measure in the Sales table



Week-over-week-to-date growth
Week-over-week-to-date growth compares a week-to-date on a
specific date with the week-to-date on an equivalent date in the
previous week. The calculation is similar to year-over-year and
quarter-over-quarter growth, even though the data available does
not show a specific example of a partial week corresponding to the
last day available (August 15, 2019). Figure 4-12 shows an example
of the result.



FIGURE 4-12 The Sales PWTD measure shows the Sales WTD of the previous week.

Sales PWTD is like Sales WTD; it filters the previous value in Fiscal
Year Week Number instead of the last week visible in the filter context.
The main difference is the evaluation of
LastDayOfFiscalYearWeekAvailable, which must consider only dates
with sales while ignoring the filter on filter-safe columns, which are
considered in the evaluation of Sales Amount:



Measure in the Sales table

Sales WOWTD and Sales WOWTD % rely on the Sales PWTD measure
to guarantee a fair comparison:

Measure in the Sales table



Measure in the Sales table

Comparing period-to-date with previous
full period

Comparing a to-date aggregation with the previous full period is
useful when you consider the previous period as a benchmark. Once
the current year-to-date reaches 100% of the full previous year, this
means we have reached the same performance as the previous full
period, hopefully in fewer days.

Year-to-date over the full previous
year



Year-to-date over the full previous year compares the year-to-date
against the entire previous year. Figure 4-13 shows that in FW48-
2008 Sales YTD surpassed the value of Sales Amount for the entire
fiscal year 2007. Sales YTDOPY % provides an immediate comparison
of the year-to-date with the total of the previous fiscal year; it shows
growth over the previous fiscal year when the percentage is positive.

FIGURE 4-13 Sales YTDOPY % shows a positive value when Sales YTD is greater than the
total Sales Amount of the previous fiscal year.

The year-to-date-over-previous-year growth is computed by the
Sales YTDOPY and Sales YTDOPY % measures; these rely on the Sales
YTD measure to compute the year-to-date value, and on the Sales
PYC measure to get the sales amount of the entire previous fiscal
year:

Measure in the Sales table



Measure in the Sales table

Measure in the Sales table

Quarter-to-date over the full previous
quarter
Quarter-to-date over the full previous quarter compares the quarter-



to-date against the entire previous fiscal quarter. Figure 4-14 shows
that Sales QTD surpassed the total Sales Amount for FQ1-2009 in
FW23-2009. Sales QTDOPQ % provides an immediate comparison of
the quarter-to-date with the total of the previous quarter; it shows
growth over the previous quarter when the percentage is positive.

FIGURE 4-14 Sales QTDOPQ % shows a positive percentage from FW23-2009, when Sales
QTD starts to be greater than the Sales Amount for FQ1-2009.

The quarter-to-date-over-previous-quarter growth is computed with
the Sales QTDOPQ and Sales QTDOPQ % measures. These rely on
the Sales QTD measure to compute the quarter-to-date value, and on
the Sales PQC measure to get the sales amount of the entire previous
quarter:

Measure in the Sales table



Measure in the Sales table

Measure in the Sales table

Week-to-date over the full previous
week
The week-to-date over the full previous week compares the week-to-



date against the entire previous week. Figure 4-15 shows that Sales
WTD during FW33-2009 surpasses the total Sales Amount for FW32-
2009. Sales WTDOPW% provides an immediate comparison of the
week-to-date with the total of the previous week; it shows growth
over the previous week when the percentage is positive, as is the
case starting from August 11, 2009.

FIGURE 4-15 Sales WTDOPW % shows a positive percentage starting from August 11, 2009,
when Sales WTD starts to be greater than the Sales Amount for FW32-2009.

The week-to-date-over-previous-week growth is computed with the
Sales WTDOPW % and Sales WTDOPW measures. These rely on the
Sales WTD measure to compute the week-to-date value, and on the
Sales PWC measure to get the sales amount of the entire previous
week:



Measure in the Sales table

Measure in the Sales table

Measure in the Sales table

Using moving annual total calculations
A common way to aggregate data over several months is by using
the moving annual total instead of the year-to-date. In the week-



based calendar, the moving annual total includes the last 52 weeks
(364 days) of data.

Moving annual total
Sales MAT (364) computes the moving annual total, as shown in
Figure 4-16.

FIGURE 4-16 Sales MAT (364) in FQ3-2009 aggregates Sales Amount from FQ4-2008 to FQ3-
2009.

The Sales MAT (364) measure defines a range over the Date[Date]
column that includes the days of one complete year from the last day
in the filter context:

Measure in the Sales table



The Sales MAT (364) does not correspond to a year total in case the
year has more than 52 weeks, as is the case every 5-6 years in the
4-4-5 calendar. Yet, it is a better measure to evaluate trends over
time because it always includes the same number of days and
weeks.

Moving annual total growth
The moving annual total growth is computed with the Sales PYMAT
(364), Sales MATG, and Sales MATG % measures, which rely on the
Sales MAT (364) measure. Sales MAT (364) provides a correct value
one year after the first sale ever, once it has collected one full year of
data; it is not protected in case the current time period is shorter than
a full year. For example, the amount for the fiscal year FY 2009 of
Sales PYMAT (364) is 9,788,101.45, which corresponds to the Sales
Amount of FY 2008 as shown in Figure 4-17. When compared with
sales in FY 2009, this produces a comparison of less than 6 months
– data being only available until August 15, 2009 – with a full fiscal
year 2009. Similarly, you can see that Sales MATG % starts in FY
2008 with very high values and stabilizes after a year. This behavior
is by design: the moving annual total is usually computed at the



month or day granularity to show trends in a chart.

FIGURE 4-17 Sales MATG % shows the growth between Sales MAT (364) and Sales PYMAT
(364) as a percentage.

The measures are defined as follows:

Measure in the Sales table

Measure in the Sales table



Measure in the Sales table

Moving averages
The moving average is typically used to display trends in line charts.
Figure 4-18 includes the moving average of Sales Amount over four
weeks (Sales AVG 4W), one quarter (Sales AVG 1Q), and a fiscal year
(Sales AVG 1Y).



FIGURE 4-18 Sales AVG 4W, Sales AVG 1Q, and Sales AVG 1Y show the moving average over
four weeks, one quarter, and one year, respectively.

Moving average 4 weeks
The Sales AVG 4W measure computes the moving average over four
weeks by iterating a list of the last 28 dates obtained in the Period4W
variable. The Period4W variable retrieves the dates visible in the last
28 days with two exceptions; it ignores dates without sales, and it
applies the filters existing on filter-safe columns in the Date table:

Measure in the Sales table



This pattern is very flexible because it also works for non-additive
measures. With that said, for a regular additive calculation Result can



be implemented using a different and faster formula:

Moving average 1 quarter
The Sales AVG 1Q measure computes the moving average over 13
weeks by iterating a list of the dates in the last quarter obtained in
the Period1Q variable. The Period1Q variable retrieves the dates
visible included in the last 13 weeks (91 days) with two exceptions; it
ignores dates without sales, and it applies the filters existing on filter-
safe columns in the Date table:

Measure in the Sales table



For simple additive measures, the pattern based on DIVIDE which
is shown for the moving average over four weeks (28 days) can also
be used for the average over 91 days.

Moving average 1 year
The Sales AVG 1Y measure computes the moving average over one
year by iterating a list of the dates in the last 364 days in the
Period1Y variable. The Period1Y variable retrieves the dates visible



included in the last fiscal year (only including 52 weeks) with two
exceptions; it ignores dates without sales, and it applies the filters
existing on filter-safe columns in the Date table:

Measure in the Sales table



For simple additive measures, the pattern based on DIVIDE shown
for the moving average over four weeks (28 days) can also be used



for the average over 364 days.







CHAPTER 5

Custom time-related calculations

Download sample files: https://sql.bi/dax-204

This pattern shows how to compute time-related calculations like
year-to-date, same period last year, and percentage growth using a
custom calendar. This pattern does not rely on DAX built-in time
intelligence functions. All the measures refer to the fiscal calendar
because the same measures, with a regular Gregorian calendar, can
be obtained using the Standard time-related calculations pattern.

There are several scenarios where the DAX built-in functions for
time intelligence cannot provide the right answers. For example, if
your fiscal year starts on a month other than January, April, July, or
October, then you cannot use the DAX time intelligence functions for
quarterly-related calculations. In these scenarios, you need to
rewrite the time intelligence logic of the built-in functions by using
plain DAX functions like FILTER and CALCULATE. Moreover, you
must create a Date table that contains additional columns to compute
time periods like the previous quarter or a whole year. Indeed, the
standard time intelligence functions derive this information from the

https://sql.bi/dax-204


Date column in the Date table. The custom time-related calculations
pattern does not extract the information from the Date column and
requires additional columns.

The measures in this pattern work on a regular Gregorian calendar
with the following assumptions:

Years and quarters always start on the first day of a month.

A month is always a calendar month.

In simpler words, this pattern works fine if the fiscal year starts on
the first day of a month, and a quarter is made of three regular
months. For example, if the fiscal year starts on March 3, or all the
fiscal quarters must have 90 days, then the formulas do not work.

An example of a calendar that does not satisfy the requirements of
this pattern is a week-based calendar. If you need calculations over
periods based on weeks, you should use the Week-related
calculations pattern.

Introduction to custom time intelligence
calculations

The custom time intelligence calculations in this pattern modify the
filter context over the Date table to obtain the required result. The
formulas are designed to apply filters to the lowest granularity
required to improve query performances. For example, a calculation
over months works by modifying the filter context at the month level,
instead of the individual dates. This technique reduces the cost of
computing the new filter and applying it to the filter context. This
optimization is especially useful when using DirectQuery, even
though it also improves performance on models imported in memory.



Because the pattern does not rely on the standard time intelligence
functions, the Date table does not have the requirements needed for
standard DAX time intelligence functions.

For example, the Mark as Date Table setting is suggested, but not
required. The formulas in this pattern do not rely on the automatic
REMOVEFILTERS applied over the Date table when the Date column
is filtered. Instead, the Date table must contain specific columns
required by the measures. Therefore, although you might already
have a Date table in your model, you must read the next section
(Building a Date table) to verify that all the required columns are
present in the Date table.

Building a Date table
The Date table used for custom time-related calculations is based on
the months of the standard Gregorian calendar table. If you already
have a Date table, you can import the table and – if necessary –
extend it to include a set of columns containing the information
required by the DAX formulas. We describe these columns later in
this section.

If a Date table is not available, you can create one using a DAX
calculated table. As an example, the following DAX expression
defines the Date table used in this pattern, which has a fiscal year
starting on March 1:

Calculated table







The first two variables are useful to customize the beginning of both
the fiscal year and the week. The next variables detect the range of
fiscal years required, based on the transactions in Sales. You can
customize FirstSalesDate and LastSalesDate to retrieve the first and
last transaction date in your model, or you can assign the first and
last fiscal year in the FirstFiscalYear and LastFiscalYear variables.

The quarters are computed starting from the first month of the fiscal
year. The Date table contains hidden columns to support the correct
sorting of years, quarters, and months. These hidden columns are
populated with sequential numbers that make it easy to apply filters
to retrieve previous or following years, quarters, and months, without
relying on complex calculations at query time.

Among the many columns, one is worth expanding on. The Year
Month Number column contains the year number multiplied by 12,
plus the month. The resulting number is hard to read, but it allows
math over months. Given the Year Month Number value, you can just
subtract 12 to go back one year; this gives you the value of Year
Month Number corresponding to the same month in the previous year.
Many formulas use this characteristic to perform time-shifts.

In order to obtain the right visualization, the calendar columns must
be configured in the data model as follows – for each column you
can see the data type and the format string, followed by a sample
value:

Date: Date, m/dd/yyyy (8/14/2007), used as a column to mark
as date table (not required)

DateKey: Whole Number, (20070814), used as an alternate
key for relationships

Sequential Day Number: Whole Number, Hidden (40040), same
value of Date as integer



Year Month: Text (Aug 2007)

Year Month Number: Whole Number, Hidden (24091)

Month: Text (Aug)

Fiscal Month Number: Whole Number, Hidden (6)

Fiscal Month in Quarter Number: Whole Number, Hidden (3)

Fiscal Year: Text (FY 2008)

Fiscal Year Number: Whole Number, Hidden (2008)

Fiscal Year Quarter: Text (FQ2-2008)

Fiscal Year Quarter Number: Whole Number, Hidden (8033)

Fiscal Quarter: Text (FQ2)

Day of Fiscal Year Number: Whole Number, Hidden (167)

Day of Month Number: Whole Number, Hidden (14)

We want to introduce the concept of filter-safe columns. In a table,
there are columns whose filters need to be preserved. The filters
over filter-safe columns are not altered by the time intelligence
calculations. They will be affecting the calculations presented in this
pattern. The filter-safe columns in our sample table are the following:

Day of Week: ddd (Tue)

Day of Week Number: Whole Number, Hidden (6)

Working Day: Text (Working Day)

We further describe the behavior of filter-safe columns in the next
section.

The Date table in this pattern has one hierarchy:

Fiscal: Year (Fiscal Year), Quarter (Fiscal Year Quarter), Month



(Year Month)

The columns are designed to simplify the formulas. For example,
the Day of Fiscal Year Number column contains the number of days
since the beginning of the fiscal year, ignoring February 29 in leap
years; this number makes it easier to find a corresponding range of
dates in the previous year.

The Date table must also include a hidden DateWithSales calculated
column, used by some of the formulas of this pattern:

Calculated column in the Date table

The Date[DateWithSales] column is TRUE if the date is on or before
the last date with sales; it is FALSE otherwise. In other words,
DateWithSales is TRUE for “past” dates and FALSE for “future” dates,
where “past” and “future” are relative to the last date with sales.

In case you import a Date table, you want to create columns that
are similar to the ones we describe in this pattern, in that they should
behave the same way. 

Understanding filter-safe columns
The Date table contains two types of columns: regular columns and

filter-safe columns. The regular columns are manipulated by the
measures shown in this pattern. The filters over filter-safe columns
are always preserved and never altered by the measures of this
pattern. An example clarifies this distinction. The Year Month Number
column is a regular column: the formulas in this pattern have the
option of changing its value during their computation.



For example, in order to compute the previous month the formulas
change the filter context by subtracting one to the value of Year
Month Number in the filter context. Conversely, the Day of Week
column is a filter-safe column. If a user filters Monday to Friday, the
formulas do not alter that filter on the day of the week. Therefore, a
previous-year measure keeps the filter on the day of the week; it
replaces only the filter on calendar columns such as year, month,
and date.

To implement this pattern, you must identify which columns need to
be treated as filter-safe columns, because filter-safe columns require
special handling. The following is the classification of the columns
used in the Date table of this pattern:

Calendar columns: Date, DateKey, Sequential Day Number, Year
Month, Year Month Number, Month, Fiscal Month Number, Fiscal
Month in Quarter Number, Fiscal Year, Fiscal Year Number, Fiscal
Year Quarter, Fiscal Year Quarter Number, Fiscal Quarter, Day of
Fiscal Year Number, Day of Month Number .

Filter-safe columns: Day of Week, Day of Week Number, Working
Day.

The special handling of filter-safe columns pertains to the filter
context. Every measure in this pattern manipulates the filter context
by replacing filters over all the calendar columns, without altering
any filter applied to the filter-safe columns. In other words, every
measure follows two rules:

Remove filters on calendar columns;

Keep filters on filter-safe columns.

The ALLEXCEPT function can implement these requirements;



specify the Date table in the first argument, and the filter-safe
columns in the following arguments:

If the Date table did not have any filter-safe column, the filters could
be removed by using REMOVEFILTERS over the Date table instead
of ALLEXCEPT:

If your Date table does not contain any filter-safe column, then you
can use REMOVEFILTERS instead of ALLEXCEPT in all the
measures of this pattern. We provide a complete scenario that
includes filter-safe columns. Whenever possible, you can simplify it.

While the ALLEXCEPT should include all the filter-safe columns,
we skip specifically the hidden filter-safe columns used only to sort
other columns. For example, we do not include Day of Week Number,
which is a hidden column used to sort the Day of Week column. The
assumption is that the user never applies filters on hidden columns;
if this assumption is not true, then the hidden filter-safe columns
must also be included in the ALLEXCEPT arguments. You can find
an example of the different results of using REMOVEFILTERS and
ALLEXCEPT in the Year-to-date total section of this pattern.

Controlling the visualization on future



dates
Most of the time intelligence calculations should not display values
for dates after the last date available. For example, a year-to-date
calculation can also show values for future dates, but we want to
hide those values. The dataset used in these examples ends on
August 15, 2009. Therefore, we consider the month of August 2009,
the third quarter of 2009 (Q3-2009), and the year 2009 as the last
time periods with data. Any date later than August 15, 2019 is
considered future, and we want to hide its values.

In order to avoid showing results in future dates, we use the
following ShowValueForDates measure. ShowValueForDates returns
TRUE if the period selected is earlier than the last period with data:

Measure (hidden) in the Date table

The ShowValueForDates measure is hidden. It is a technical
measure created to reuse the same logic in many different time-
related calculations, and the user should not use ShowValueForDates
directly in a report. The REMOVEFILTERS function removes filters
from all tables in the model, because the purpose is to retrieve the



last date used in the Sales table regardless of filters.

Naming convention
This section describes the naming convention we adopted to
reference the time intelligence calculations. A simple categorization
shows whether a calculation:

Shifts over a period of time, for example the same period in
the previous year;

Performs an aggregation, for example year-to-date; or,

Compares two time periods, for example this year compared
to last year.



Computing period-to-date totals
The year-to-date, quarter-to-date, and month-to-date calculations
modify the filter context for the Date table, showing the values from
the beginning of the period up to the last date available in the filter
context.



Year-to-date total
The year-to-date aggregates data starting from the first day of the
fiscal year, as shown in Figure 5-1.

FIGURE 5-1 Sales YTD (simple) shows the value for any time period, whereas Sales YTD
hides the result after the last period with data.

The measure filters all the days less than or equal to the last day
visible in the last fiscal year. It also filters the last visible Fiscal Year
Number:

Measure in the Sales table



Because LastDayAvailable contains the last date visible in the filter
context, Sales YTD (simple) shows data even for future dates in the
year. We can prevent this behavior in the Sales YTD measure by
returning a result only when ShowValueForDates returns TRUE:

Measure in the Sales table

ALLEXCEPT is required to preserve the filter-safe columns Working
Day or Day of Week in case they are used in the report. To
demonstrate this, we created an incorrect measure: Sales YTD
(wrong), which removes the filters from the Date table by using



REMOVEFILTERS instead of ALLEXCEPT. By doing this, the
formula loses the filter on Working Day used in the columns of the
matrix, thus returning an inaccurate result:

Measure in the Sales table

Figure 5-2 shows the comparison of the correct and incorrect
measures.

FIGURE 5-2 Sales YTD (wrong) shows Sales YTD calculated by ignoring the filter over
Working Day.

The Sales YTD (wrong) measure would work well if the Date table did



not contain any filter-safe columns. The presence of filter-safe
columns requires the use of ALLEXCEPT instead of
REMOVEFILTERS. We used Sales YTD as an example, but the same
concept is valid for all the other measures in this pattern.

Quarter-to-date total
Quarter-to-date aggregates data starting from the first day of the
fiscal quarter, as shown in Figure 5-3.

FIGURE 5-3 Sales QTD shows the quarter-to-date amount, which is blank for FY 2010
because there is no data in FQ4-2010.



The quarter-to-date value is computed using the same technique
as the one used for the year-to-date total. The only difference is the
filter on Fiscal Year Quarter Number instead of on Fiscal Year Number:

Measure in the Sales table

Month-to-date total
The month-to-date aggregates data from the first day of the month,
as shown in Figure 5-4.



FIGURE 5-4 Sales MTD shows the month-to-date amount, which is blank for FY 2010
because there is no data after August 15, 2009.

The month-to-date total is computed with a technique similar to the
technique used in year-to-date total and quarter-to-date total. It filters
all the days that are less than or equal to the last day visible in the
last month. The filters are applied to the Day of Month Number and
Year Month Number columns:

Measure in the Sales table



The measure filters Day of Month Number instead of Day of Fiscal
Year Number. The goal is to filter a column with a lower number of
unique values, which is a best practice from a query performance
standpoint (the quarter-to-date total does not apply this optimization
because the performance advantage would be minimal).

Computing period-over-period growth
A common requirement is to compare a time period with the same
period in the previous year, quarter, or month. The last
month/quarter/year could be incomplete. In order to achieve a fair
comparison, the measure should work on an equivalent time period.
For these reasons, the calculations shown in this section use the
Date[DateWithSales] calculated column as described in the article,
Hiding future dates for calculations in DAX.

Year-over-year growth
Year-over-year compares a time period to its equivalent in the
previous year. In this example, data is available until August 15,
2009. For this reason, Sales PY shows numbers related to FY 2010,
and just considers transactions made before August 15, 2008.

https://www.sqlbi.com/articles/hiding-future-dates-for-calculations-in-dax/


Figure 5-5 shows that Sales Amount in August 2009 is 721,560.95,
whereas Sales PY in August 2009 returns 296,529.51 because the
measure considers only the sales made up to August 15, 2008.

FIGURE 5-5 For August 2009, Sales PY shows the amount for August 1-15, 2008 because
there is no data after August 15, 2009.

Sales PY uses a standard technique that shifts the selection by the
number of months defined in the MonthsOffset variable. In Sales PY
the variable is set to 12, to move time back by 12 months. The next
measures Sales PQ and Sales PM use the same code, the only
difference being the value assigned to MonthsOffset.

Sales PY iterates every month active in the filter context. For each
month, it checks whether the days selected in the month correspond
to all the days of the month, taking into account the filter-safe



columns – Working Day and Day of Week in our example. If all the
days are selected, it means that the current filter context includes a
full month. Therefore, the filter is shifted back to the previous full
month. If not all the days are selected, it means that the user has
placed one or more filters on calendar columns that show a partial
month. In that case, the selected days are shifted back in the
corresponding month of the previous year. The filter over
Date[DateWithSales] guarantees a fair comparison with the last period
with data:

Measure in the Sales table



The year-over-year growth is computed as an amount in Sales YOY,



and as a percentage in Sales YOY %. Both measures use Sales PY to
consider only dates up to August 15, 2009:

Measure in the Sales table

Measure in the Sales table

Quarter-over-quarter growth
Quarter-over-quarter compares a time period with its equivalent in
the previous quarter. In this example, data is available until August
15, 2009, which is the first 15 days of the third month in the second
quarter of FY 2010. Therefore, Sales PQ for August 2009 (the third
month of the second quarter) shows sales until May 15, 2009, which
is the first 15 days of the third month of the previous quarter. Figure
5-6 shows that Sales Amount in May 2009 is 1,067,165.23, whereas



Sales PQ in August 2009 returns 435,306.10 thus only taking into
account sales made up to May 15, 2009.

FIGURE 5-6 For August 2009, Sales PQ shows the amount for May 1-15, 2009; indeed, there
is no data after August 15, 2009.

Sales PQ also uses the technique described for Sales PY. The only
difference is that MonthsOffset is set to 3 months instead of 12:

Measure in the Sales table

The quarter-over-quarter growth is computed as an amount in Sales
QOQ and as a percentage in Sales QOQ %. Both measures use Sales
PQ to guarantee a fair comparison:

Measure in the Sales table



Measure in the Sales table

Month-over-month growth
Month-over-month compares a time period with its equivalent in the
previous month. In this example, data is only available until August
15, 2009. For this reason, Sales PM only takes sales between July 1-
15, 2009 into account in order to return a value for August 2009.
That way, it only returns the corresponding portion of the previous
month. Figure 5-7 shows that Sales Amount for July 2009 is
1,068,396.58, whereas Sales PM of August 2019 returns 584,212.78
– since it only takes into account sales up to July 15, 2009.



FIGURE 5-7 For August 2009, Sales PM shows the amount in the July 1-15, 2009 time
period; indeed, there is no data after August 15, 2009.

Sales PM uses the technique described for Sales PY. The only
difference is that MonthsOffset is set to 1 month instead of 12:

Measure in the Sales table

The month-over-month growth is computed as an amount in Sales
MOM and as a percentage in Sales MOM %. Both measures use
Sales PM to guarantee a fair comparison:

Measure in the Sales table



Measure in the Sales table

Period-over-period growth
Period-over-period growth automatically selects one of the measures
previously described in this section based on the current selection of
the visualization. For example, it returns the value of month-over-
month growth measures if the visualization displays data at the
month level; but it switches to year-over-year growth measures if the
visualization shows the total at the year level. The result is visible in
Figure 5-8.



FIGURE 5-8 Sales PP shows the value of the previous month at the month level, of the
previous quarter at the quarter level, and of the previous year at the year level.

The three measures Sales PP, Sales POP, and Sales POP % redirect
the evaluation to the corresponding year, quarter, and month
measures depending on the level selected in the report. ISINSCOPE
detects the level used in the report. The arguments passed to
ISINSCOPE are the attributes used in the rows of the Matrix visual in
Figure 5-8. The measures are defined as follows:



Measure in the Sales table

Measure in the Sales table

Measure in the Sales table

Computing period-to-date growth
The growth of a “to-date” measure is the comparison of the “to-date”
measure with the same measure over an equivalent period with a



specific offset. For example, you can compare a year-to-date
aggregation against the year-to-date in the previous year, that is with
an offset of one year.

All the measures in this set of calculations take care of partial time
periods. Because data is available only until August 15, 2009 in our
example, the measures make sure the previous year does not report
dates after August 15, 2008.

Year-over-year-to-date growth
Year-over-year-to-date growth compares the year-to-date at a
specific date with the year-to-date at an equivalent date in the
previous year. Figure 5-9 shows that Sales PYTD in FY 2010 is
considering only sales until August 15, 2008. For this reason, Sales
YTD of FQ2-2009 is 4,909,687.61, whereas Sales PYTD for FQ2-2010
is less at 4,484,656.17.



FIGURE 5-9 For FQ2-2010, Sales PYTD shows the amount of March 1-August 15, 2008
because there is no data after August 15, 2009.

Sales PYTD is like Sales YTD, in that it filters the previous value in
Fiscal Year Number instead of the last year visible in the filter context.
The main difference is the evaluation of LastDayOfFiscalYearAvailable;
it must take into account only dates with sales, and ignore the filter
on filter-safe columns which matter in the evaluation of Sales Amount:

Measure in the Sales table



Sales YOYTD and Sales YOYTD % rely on Sales PYTD to guarantee a
fair comparison:

Measure in the Sales table

Measure in the Sales table



Quarter-over-quarter-to-date growth
Quarter-over-quarter-to-date growth compares the quarter-to-date at
a specific date with the quarter-to-date at an equivalent date in the
previous quarter. Figure 5-10 shows that Sales PQ in August 2009 is
just taking into account transactions performed up to May 15, 2008,
to get the corresponding part of the previous quarter. For this reason
Sales QTD of May 2009 is 2,242,196.31, whereas Sales PQTD for
August 2009 is lower at 1,610,337.18.

FIGURE 5-10 Sales PQTD shows for Aug 2009 the amount of the March 1-May 15, 2009
period, because there is no data after August 15, 2009.

Sales PQTD performs several steps, some of which are somewhat
complex. The first two variables are quite easy: LastMonthSelected



contains the last month visible in the filter context, while
DaysOnLastMonth contains the number of days in LastMonthSelected.

It is important to note that if DaysOnLastMonth is equal to
DaysLastMonthSelected, it means that the current filter context
includes the end of a month; therefore the corresponding selection in
the previous quarter must include the entire relative month. If
DaysOnLastMonth is not equal to DaysLastMonthSelected, then the filter
context is restricting the number of visible days. Consequently, we
compute the last day of the month with data and we restrict the
result to go only up to the same day number in the relative month
within the previous quarter. This calculation takes place in
LastDayOfMonthWithSales, which contains the last day of the month
with sales regardless of the filter-safe columns.

If the selection in the last month includes the whole month, then
LastDayOfMonthWithSales contains the fixed value 31, which is a
number greater than or equal to all the other days of a month. A
similar calculation occurs with LastMonthInQuarterWithSales, this time
with the month number. These two variables are used to compute
FilterQTD in the last step. FilterQTD contains all the pairs of
(FiscalMonthInQuarter, FiscalDayInMonth) that are less than or equal
to the pair (LastMonthInQuarterWithSales, LastDayOfMonthWithSales).
By using ISONORAFTER ( …, DESC ) we obtain the effect we
would get by using NOT ISONORAFTER with the default ASC sort
order:

Measure in the Sales table





Sales QOQTD and Sales QOQTD % rely on Sales PQTD to guarantee
a fair comparison:

Measure in the Sales table

Measure in the Sales table

Month-over-month-to-date growth
Month-over-month-to-date growth compares a month-to-date at a
specific date with the month-to-date at an equivalent date in the
previous month. Figure 5-11 shows that Sales PMTD in August 2009



is only taking sales made up to July 15, 2009 into account, to get the
corresponding portion of the previous month. For this reason Sales
MTD of July 2009 is 1,068,396.58, whereas Sales PMTD for August
2009 is lower: 584,212.78.

FIGURE 5-11 For Aug 2009, Sales PQTD shows the amount of the July 1-15, 2009 period,
because there is no sales data after August 15, 2009.

Sales PMTD performs several steps, some of which are somewhat
complex. The first two variables are quite easy: LastMonthSelected



contains the last month visible in the filter context, while
DaysOnLastMonth contains the number of days in LastMonthSelected.

It is important to note that if DaysOnLastMonth is equal to
DaysLastMonthSelected, it means that the current filter context
includes the end of a month; therefore the corresponding selection in
the previous month must include the complete month. If
DaysOnLastMonth is not equal to DaysLastMonthSelected, then the filter
context is restricting the number of visible days. Consequently, we
compute the last day of the month with data, and we restrict the
result to only go up to the same day number in the previous month.
This calculation takes place in LastDayOfMonthWithSales, which
contains the last day of the month with sales data regardless of the
filter-safe columns.

If the selection in the last month includes the whole month, then
LastDayOfMonthWithSales contains the fixed value 31, which is a
number greater than or equal to all the other days of a month. The
LastDayOfMonthWithSales is then used to filter the days in the
previous month, which is obtained by subtracting one to the value of
LastMonthSelected:

Measure in the Sales table



Sales MOMTD and Sales MOMTD % rely on the Sales PMTD measure
to guarantee a fair comparison:



Measure in the Sales table

Measure in the Sales table

Comparing period-to-date with a
previous full period

Comparing a to-date aggregation with the previous full time period is
useful when you look at the previous period as a benchmark. Once
the current year-to-date reaches 100% of the full previous year, this
means you have reached the same performance as the previous full
period, hopefully in fewer days.

Year-to-date over the full previous
year



The year-to-date over the full previous year compares the year-to-
date against the entire previous year. Figure 5-12 shows that in
January 2009 (which is close to the end of FY 2009) Sales YTD is
10% lower than Sales Amount for the entire fiscal year 2008. Sales
YTDOPY % provides an immediate comparison of the year-to-date
with the total of the previous year; it shows growth over the previous
year when the percentage is positive, which never happens in this
example.

FIGURE 5-12 Sales YTDOPY % shows a negative value corresponding to the missing
percentage of Sales YTD to reach the total Sales Amount of the previous year.

The year-to-date-over-previous-year growth is computed by the
Sales YTDOPY and Sales YTDOPY % measures; these rely on the Sales
YTD measure to compute the year-to-date value, and on the Sales
PYC measure to get the sales amount of the entire previous year:

Measure in the Sales table



Measure in the Sales table

Measure in the Sales table

Quarter-to-date over the full previous



quarter
The quarter-to-date over the full previous quarter compares the
quarter-to-date against the entire previous quarter. Figure 5-13
shows that Sales QTD surpassed the total Sales Amount for FQ1-2008
only in August 2008. Sales QTDOPQ % provides an immediate
comparison of the quarter-to-date with the total of the previous
quarter; it shows growth over the previous quarter when the
percentage is positive.

FIGURE 5-13 Sales QTDOPQ % shows a positive percentage in August 2008, when Sales
QTD is greater than the Sales Amount for FQ1-2008.

The quarter-to-date-over-previous-quarter growth is computed with
the Sales QTDOPQ and Sales QTDOPQ % measures; these rely on the
Sales QTD measure to compute the quarter-to-date value and on the
Sales PQC measure to get the sales amount of the entire previous
quarter:

Measure in the Sales table



Measure in the Sales table

Measure in the Sales table

Month-to-date over the full previous



month
The month-to-date over the full previous month compares the
month-to-date against the entire previous month. Figure 5-14 shows
that Sales MTD during April 2008 surpasses the total Sales Amount for
March 2008. Sales MTDOPM % provides an immediate comparison of
the month-to-date with the total of the previous month; it shows
growth over the previous month when the percentage is positive as
is the case starting April 19, 2008.

FIGURE 5-14 Sales MTDOPM % shows a positive percentage starting from April 19, 2008,
when Sales MTD starts to be greater than the Sales Amount for March 2008.



The month-to-date-over-previous-month growth is computed with
the Sales MTDOPM % and Sales MTDOPM measures; these rely on
the Sales MTD measure to compute the month-to-date value and on
the Sales PMC measure to get the sales amount of the entire
previous month:

Measure in the Sales table

Measure in the Sales table

Measure in the Sales table



Using moving annual total calculations
A common way of aggregating data over several months is by using
the moving annual total instead of the year-to-date. The moving
annual total includes the last 12 months of data. For example, the
moving annual total for March 2008 includes data from April 2007 to
March 2008.

Moving annual total
Sales MAT computes the moving annual total, as shown in Figure 5-
15. The same report also shows Sales MAT (364): it is a similar
measure with the difference that it uses the last 364 days
(corresponding to the last 52 weeks), instead of a full year.



FIGURE 5-15 Sales MAT in March 2008 aggregates Sales Amount from April 2007 to March
2008.

The Sales MAT measure defines a range over the Date[Date]
column that includes the days of one complete year starting from the
last day in the filter context:

Measure in the Sales table



Sales MAT (364) does not correspond to a total over the year. Yet, it
is a good measure to evaluate trends over time or in a chart because
it always includes the same number of days and an integer number
of weeks. Consequently, the days of the week are evenly
represented in the result. The measure defines a range over the
Date[Date] column that includes the last 364 days from the last day
in the filter context:

Measure in the Sales table



Moving annual total growth
The moving annual total growth is computed with the Sales PYMAT,
Sales MATG, and Sales MATG % measures, which rely on the Sales
MAT measure. The Sales MAT measure provides a correct value one
year after the first sale ever (when it collects one full year of data),
and it is not protected in case the current time period is shorter than
a full year. For example, the amount for the fiscal year 2010 of Sales
PYMAT is 9,874,218.49, which corresponds to the Sales Amount of FY
2009 as shown in Figure 5-16. When compared with sales in FY
2010, this produces a comparison of less than 6 months – data
being only available until August 15, 2009 – with the full fiscal year
2009. Similarly, you can see that Sales MATG % starts in FY 2009
with very high values and stabilizes after a year. This behavior is by
design: the moving annual total is usually computed at the month or
day granularity to show trends in a chart.



FIGURE 5-16 Sales MATG % shows the growth between Sales MAT and Sales PYMAT as a
percentage.

The measures are defined as follows:

Measure in the Sales table



Measure in the Sales table

Measure in the Sales table



The Sales PYMAT measure can also be written using the last 364
days, similar to Sales MAT (364) – the difference between Sales
PYMAT and Sales PYMAT (364) is the evaluation of the FirstDayMAT
and the LastDayMAT variables:

Measure in the Sales table

Moving averages
The moving average is typically used to display trends in line charts.
Figure 5-17 includes the moving average of Sales Amount over 30
days (Sales AVG 30D), three months (Sales AVG 3M), and a year (Sales
AVG 1Y).



FIGURE 5-17 Sales AVG 30D, Sales AVG 3M, and Sales AVG 1Y show the moving average
over 30 days, three months, and one year, respectively.

Moving average 30 days
The Sales AVG 30D measure computes the moving average over 30
days by iterating a list of the last 30 dates obtained in the Period30D
variable. It does so by fetching the dates visible included in the last
30 days, while ignoring dates without sales and taking into account
filters applied by filter-safe columns in the Date table:

Measure in the Sales table



This pattern is very flexible because it also works for non-additive
measures. With that said, for a regular additive calculation Result can



be implemented using a different and faster formula:

Moving average 3 months
The Sales AVG 3M measure computes the moving average over three
months. It iterates a list of the dates in the last three months
obtained in the Period3M variable by getting the dates visible
included in the last 3 months, by ignoring dates without sales and by
taking into account the filters applied by filter-safe columns in the
Date table:

Measure in the Sales table



For simple additive measures, the pattern based on DIVIDE which



is shown for the moving average over 30 days can also be used for
the average over three months.

Moving average 1 year
The Sales AVG 1Y measure computes the moving average over one
year by iterating a list of the dates in the last year in the Period1Y
variable. It does so by getting the dates visible included in the last
year, by ignoring dates without sales and by taking into account
filters applied by filter-safe columns in the Date table:

Measure in the Sales table



For simple additive measures, the pattern based on DIVIDE shown



for the moving average over 30 days can also be used for the
average over one year.





CHAPTER 6

Comparing different time periods

Download sample files: https://sql.bi/dax-205

This pattern is a useful technique to compare the value of a measure
in different time periods. For example, we can compare the sales of
the last month against a user-defined period. The two time periods
might have a different number of days, like comparing one month
against a full year. When the durations of both time periods are
different, we should adjust the values to make a fair comparison.

Pattern description
The user selects two different time periods (current, comparison)
through slicers. The report in Figure 6-1 shows the sales in the
current period and in a comparison period. The sales of the
comparison period must be adjusted using the number of days in
each period as the allocation factor.

https://sql.bi/dax-205


FIGURE 6-1 The report shows sales in different periods, alongside the adjusted comparison
value.

In order to enable the choice of two different time periods, the
model must contain two date tables: one to select the current period,
one to select the comparison period. As shown in Figure 6-2, the
additional Comparison Date table is linked to the original Date table
with an inactive relationship: This simplifies the handling of
relationships with other fact tables.



FIGURE 6-2 The Comparison Date table is linked to the Date table through an inactive
relationship.

When a measure evaluates an expression filtered by the
Comparison Date table, the measure expression activates the
relationship between Comparison Date and Date; it also performs a
REMOVEFILTERS on the Date table in order to use - in Sales - the
filter from Comparison Date. Using this model, any existing measure
can compute the value in the current or comparison period with a
simple change in the active relationship.

The following is the definition of the Comparison Sales Amount
measure:

Measure in the Sales table



In order to adjust the value of Comparison Sales Amount, we need an
allocation method. In the example we use the number of days in the
two periods as the allocation factor; the business logic may dictate
that only working days should be used for the adjustment. In other
words, a different adjustment logic is possible and depends on the
business requirements.

In this example of adjustment logic, if the comparison period has
more days than the current time period, we reduce the Comparison
Sales Amount result according to the ratio between the number of
days in the two periods:

Measure in the Sales table













CHAPTER 7

Semi-additive calculations

Download sample files: https://sql.bi/dax-206

Calculations reporting values at the start or the end of a time period
are quite the challenge for any BI developer, and DAX is no
exception. These measures are not hard to compute; the
complicated part is understanding the desired behavior precisely.
These calculations do not work by aggregating values throughout
the entire period, as you would typically do for sales amounts.
Instead, the calculations should return the value at the beginning or
the end of a selected time period. These calculations are also known
as semi-additive calculations. They are semi-additive because they
do sum up specific attributes, like customers, but not over other
attributes, like dates, all the while reporting the value at the
beginning or end of the period.

As an example, we use a model that contains the current balance

https://sql.bi/dax-206


of bank accounts. Over the customers, the measure must be
additive: the total balance for all customers is the sum of the balance
for each customer. Nevertheless, when aggregating over time you
cannot use the SUM function. The balance of a quarter is not the
sum of individual monthly balances. Instead, the measure should
report the last balance of the quarter.

There are many details that need to be addressed when defining
the meaning of start or end of the period. This is the reason why this
pattern contains many examples. We suggest you read all of them,
so to better understand the subtle differences between the different
examples before choosing the correct one for your specific scenario.

Introduction
You have a model containing the balance of a few customers’
accounts. For each date, the number reported is the balance at that
date. There are different reporting dates for different customers, as
shown in Figure 7-1.



FIGURE 7-1 The source table contains customer account balances at different dates.

Because of the nature of the data, you cannot aggregate using
SUM over time. Instead, you need to aggregate values at the month,
quarter, and year level using the first or the last value of the period.
Before looking at the code, you need to focus on some important
details by answering the following questions:



1. What is the end balance of Katie Jordan’s account for 2020?
Her last available balance is on September 30, so should we
consider this to be the final value for 2020? Similarly, is the
balance of Luis Bonifaz’s account zero or is it 1,813.00 at the
end of 2020?

2. What is the total end balance over all three customers for
2020? Is it only the amount on Maurizio Macagno’s account –
because his balance is the last one – or is it the sum of the
last balance for each customer, at their respective dates?

3. What is the starting balance of 2020 for Luis Bonifaz? Is it the
balance on January 1, 2020 or December 27/31, 2019?

As you see, there are multiple valid answers to each question, and
none of them is more correct than the others. Depending on your
requirements, you choose the pattern that best fits your needs.
Indeed, all these patterns compute the balance at the start or the
end of a period. The only and very relevant difference, is in the
definition of what end of period means.

First and last date
The first and last date pattern is the simplest one. However, it can
only be adopted in the few scenarios where the dataset always
contains data at the beginning and at the end of each time period.
The formula returns the balance using the first and last date of the
Date table in the current filter context, regardless of whether data is
present on the given date. If there is no balance on that date, its
result is blank:

Measure in the Balances table



This formula produces the result in Figure 7-2.

FIGURE 7-2 The report shows the balance on the last date from the Date table.

On months where data is not available on the last day of the month,
the measure reports a blank. This pattern is the fastest among our



many examples, but it only returns accurate results when data is
stored on each and every day, or at least at the end of each and
every time period. Therefore, it is the preferred pattern for example
in financial applications where data is reported once every month.

First and last date with data
In this pattern, the formula searches the last date for which there is
data in the current filter context. Therefore, instead of finding the last
date in the Date table, it searches for the last date in the Balances
table. The result is visible in Figure 7-3.

FIGURE 7-3 The report shows the balance on the last date with data.



The formula first finds the last date to use, by finding the last date
for which there is any data in the model. It then applies it as a filter:

Measure in the Balances table

It is worth noting the presence of ALLEXCEPT in the calculation of
MaxBalanceDate. ALLEXCEPT is needed in order to avoid obtaining
the last date in the current context, which would use a different date
for each customer and at the total level. ALLEXCEPT guarantees
that the same date is used for all the customers. In your specific
scenario you might have to modify that filter to accommodate for
further requirements.

In case you do not want to use the same date for all the customers,
but instead you want to use a different date for every customer and
total those values, then this is not the right pattern. You need to use
the First and last date by customer pattern.

An alternative implementation of this pattern based on
LASTNONBLANK is less efficient. It should only be used when the
business logic determining whether a date should be considered or
not is more complex than just looking at the presence of a row in the
Balances table. For example, the following implementation produces



the same result as the previous formula with slower execution time
and larger memory consumption at query time:

Measure in the Balances table

First and last date by customer
If the dataset contains different dates for each customer - or in
general for each entity - then the pattern is different. For each
customer you must compute its last date, obtaining the subtotals by
summing partial results across other non-date attributes. The result
is visible in Figure 7-4.



FIGURE 7-4 The report shows the balance on the last date by customer, with the Total
column computed as sum.

The Balance LastDateByCustomer measure provides the desired
result:

Measure in the Balances table



In the calculation of the max balance date per customer, you might
need to modify the filter further. For example, Katie Jordan reports a
blank in Q4 because her last date happens to be outside of the
current filter context by quarter. If you need to modify this behavior
and report the balance of September forward to the end of the year –
and in following years if present – this is achieved by the Balance
LastDateByCustomerEver measure:

Measure in the Balances table



You can see the result of the Balance LastDateByCustomerEver
measure in Figure 7-5.



FIGURE 7-5 The last balance of each customer is moved forward to the end of the year.

Opening and closing balance
The previous calculations to compute a measure for the last date of
a period can be used to compute the closing balance; depending on
the requirements, you can choose the right technique. However, the
same techniques for the first date cannot be used to retrieve the
opening balance, which is usually the closing balance of the
previous period.

The Opening measure filters the day before the first day of the



period, whereas the Closing measure just gets the last date of the
period using LASTDATE:

Measure in the Balances table

Measure in the Balances table

The result in Figure 7-6 shows that Katie Jordan has an empty
opening balance, because the assumption is that the lack of data on
December 31, 2019 reflects an empty balance. Indeed, the behavior
of the Opening and Closing measures corresponds to the First and
last date pattern - which only works if there is a balance for all the
customers on the last day of the month.



FIGURE 7-6 Opening and closing balances using standard DAX functions.

DAX also provides time intelligence functions for the same
purpose, which are specific for each time period considered - month,
quarter, or year. However, these functions are slower and they
require a more complex DAX syntax in the measures. They should
only be considered for measures that always return the opening or
closing balance of a specific granularity regardless of the selection.
For example, a measure returns the opening or closing balance of
the corresponding year, and though the selection might very well be
month or quarter the measure would still return the yearly balance.



In our sample report, the CLOSINGBALANCEMONTH can be used
instead of CLOSINGBALANCEQUARTER and
CLOSINGBALANCEYEAR because they provide the same result for
the last month of a period. Similarly, OPENINGBALANCEMONTH
can be used instead of OPENINGBALANCEQUARTER and
OPENINGBALANCEYEAR because they provide the same result for
the first month of a period.

The definition of the Opening Dax and Closing Dax measures is the
following:

Measure in the Balances table

Measure in the Balances table

If you are looking to achieve a behavior matching the First and last
date by customer pattern, then you need Balance
LastDateByCustomerEver for the implementation of the Closing Ever
measure. With a small variation of the same pattern, we are also
able to implement the Opening Ever measure:

Measure in the Balances table



Measure in the Balances table

Figure 7-7 shows that the opening account balance for Katie
Jordan for January and Q1 2020 corresponds to the last account
balance available in 2019.



FIGURE 7-7 Opening and closing balances using custom calculations.

Growth in period
A useful application of this pattern is to compute the variation of a
measure over a selected time period. In our example, we want to
compute a new measure that produces the difference between the
opening and the closing balance for a selected period. The result is
visible in Figure 7-8.



FIGURE 7-8 The report shows the difference between the opening and closing balance.

The Growth measure uses the Opening and Closing measures
based on the First and last date pattern:

Measure in the Balances table



As suggested in the comments of the Growth measure, it is
possible to use a different logic to obtain the opening and closing
balance – by changing the assignment to the Opening and Closing
variables. For example, the Growth Ever measure uses the Opening
Ever and Closing Ever measures described in the Opening and closing
balance pattern:

Measure in the Balances table



The result of the Growth Ever measure is visible in Figure 7-9.

FIGURE 7-9 The report shows the difference between the opening and closing balance
(Ever version).











CHAPTER 8

Cumulative total

Download sample files: https://sql.bi/dax-207

The cumulative total pattern allows you to perform calculations such
as running totals. You can use it to implement warehouse stock and
balance sheet calculations using the original transactions instead of
using snapshots of data over time.

For example, in order to create an Inventory table that shows the
stock of each product for every month, you can make that calculation
by using the original warehouse movements table, without
processing and consolidating data in advance.

The most frequent case of running total is the sum of all the
transactions made before a given date. But that same calculation
can be used in any scenario where you accumulate values over any
sortable column. This is shown in one of the examples of this
pattern.

Basic scenario
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We want to create a measure that sums all the sales values up to a
certain date. The result should look like what we show in Figure 8-1.

FIGURE 8-1 The running total accumulates values from the beginning of time up to the
current date.



The formula must compute the value of Sales Amount for all the
dates which are less than or equal to the last one visible in the
current filter context. The code also performs an additional check to
avoid showing values for future dates – that is, when the minimum
visible date is greater than the last date with sales:

Measure in the Sales table

It is important that the Date table is marked as a date table for the
formula to work. If not, it is necessary to add REMOVEFILTERS over
Date as a further CALCULATE modifier, when applying the filter in
the computation of the Result variable:



Either way, the formula of Sales Amount RT applies a filter to the Date
table which removes all the previously existing filters on Date.
Therefore, if you need to keep existing filters on some columns of
the Date table, you must apply these filters again. For example, in
order to compute the running total while keeping the filter on the day
of the week, the code would be the following:

Measure in the Sales table



Figure 8-2 shows the two measures RT Weekdays and Sales Amount
RT running totals behaving differently, with and without the additional
filter on the days of the week.



FIGURE 8-2 The RT Weekdays measure accurately accumulates values from the beginning
of time taking into account just the selected days; Sales Amount RT ignores the selection
made in the Day of Week slicer.

Cumulative total on columns that can
be sorted

Most commonly, the cumulative total pattern tends to be based on
the date. That said, that pattern can be adapted to any column that
can be sorted. The option for a column to be sorted is important
because the code includes a “less than or equal to” condition to work
properly.

As an example, we classify customers based on sales volumes,
according to the table in Figure 8-3.

FIGURE 8-3 The configuration table controls how to cluster customers based on sales.



We want to produce a report that shows the sales amount of each
class along with the running total of sales by customer class, as you
can see in Figure 8-4.

FIGURE 8-4 The running total computes the sales amount including “previous” classes of
customers.

The code requires us to pay special attention to the Sort by
Column. Indeed, because the column shown in the report is
Customer[Customer Class] and ordering is achieved by
Customer[Customer Class Number], the calculation must override the
filters on both columns even though the entire calculation is only
based on the class number:

Measure in the Sales table



The ALLSELECTED function used in order to evaluate the
ClassesToSum variable only takes into account the classes visible in
the visual for the running total calculation. In case Sort by Column is
not being used, the ALLSELECTED can include the single column to
filter.











CHAPTER 9

Parameter table

Download sample files: https://sql.bi/dax-210

The parameter table pattern is used to create parameters in a report,
so that users can interact with slicers and dynamically change the
behavior of the report itself. For example, a report can show the top
N products by category, letting the users decide through a slicer if
they want to see 3, 5, 10 or any other number of best products. The
values available for a parameter must be stored in one or more
disconnected tables, which do not have a relationship with any other
tables of the same model. This chapter includes several examples
with the parameter table, but this pattern has an even broader range
of application.

In this pattern, we create the parameter tables by using DAX code.
The Parameter feature of Power BI Desktop uses a similar
technique. Indeed, the Parameter feature in Power BI Desktop
creates a slicer tied to a calculated table computed with the
GENERATESERIES function; it also creates a measure that returns
the selected value of the parameter. This is the approach followed in
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this pattern. The main advantage of writing the calculated table
manually in DAX is that it provides greater flexibility in the
parameters to use.

Changing the scale of a measure
The user may need to be able to choose whether to show the Sales
Amount measure as its actual value in dollars, or in thousands, or in
millions. This is achieved with a slicer, as in the report visible in
Figure 9-1. Though the real value of sales is around 30 million
dollars, the measure shows it divided by one thousand as per the
slicer selection.

FIGURE 9-1 The user chooses the scale of the Sales Amount measure with the slicer.



The slicer requires a Scale table with the list of scales. That table
includes two columns: one for the description to use in the slicer
(Units, Thousands, Millions) and one to store the actual denominator
to use when scaling the measure (1, 1,000, 1,000,000). The Scale
calculated table can be created using the DATATABLE function:

Calculated table

Using the Sort by Column feature to sort Scale by the Denominator
column is a best practice.

The Sales Amount measure scales down the result based on the
denominator obtained by the current selection in the
Scale[Denominator] column:

Measure in the Sales table



It is worth noting that despite the slicer being based on the
Scale[Scale] column, that column also cross-filters the
Scale[Denominator] column. Therefore, SELECTEDVALUE can query
the Scale[Denominator] column directly.

If multiple measures must be scaled based on the same slicer, it
might be convenient to define a measure returning the denominator
value, instead of repeating the same code snippet in every measure
that needs to follow the slicer selection:

Measure (hidden) in the Scale table

Measure in the Sales table

Measure in the Sales table



Multiple independent parameters
If a calculation depends on multiple parameters, there could be
multiple parameter tables in the model - one for each independent
parameter.

Imagine the simulation of a discount on orders: when the total
number of items in a single order exceeds a given number of articles
(Min Quantity parameter), the Discounted Amount measure applies the
Discount parameter to the transaction. Users can simulate the effect
of their choices on the historical data by using the slicers, as shown
in Figure 9-2.

FIGURE 9-2 Discounted Amount applies a 15% discount to the orders with more than 6
products.



The implementation of the Discounted Amount measure first
prepares a table in the Orders variable including the quantity and
amount of each order. The result is obtained by iterating over the
table in Orders, applying the discount to each individual order if the
total quantity exceeds the defined boundary:

Measure in the Sales table

Measure in the Sales table



By using multiple parameter tables, the parameters are
independent from each other. In other words, a user can choose any
combination of the two parameters, and the selection made in one
parameter slicer does not affect the values available in other
parameter slicers. In order to apply restrictions to the available
combinations of parameters in different slicers, it is necessary to
implement the multiple dependent parameters pattern.

Multiple dependent parameters
If a calculation depends on multiple parameters with limited available
options, then a single table with one column for each parameter can
store one row for each valid combination of the parameter values.

Imagine the scenario of the “Multiple independent parameters”
pattern with two parameters: Min Quantity and Discount. The
additional requirement is that the discount percentage cannot be
greater than 10 times the Min Quantity. In other words, if a user
selects 3 for Min Quantity, the maximum Discount available is 30%.

When the user makes a selection in the Min Quantity slicer, the
Discount slicer only shows allowed percentage values according to
the Min Quantity selected. Figure 9-3 shows an example of this
scenario.



FIGURE 9-3 Because the selection on Min Quantity is three, the Discount slicer only shows
options up to 30%.

The Discounted Amount measure is identical to the measure used for
the multiple dependent parameters example - it prepares a table in
the Orders variable that includes the quantity and amount of each
order, and then performs the proper calculation by iterating over the
table in Orders:

Measure in the Sales table

Measure in the Sales table



The Discount table contains both parameters in the Discount[Min
Quantity] and Discount[Discount] columns. The Discount table must
only include rows corresponding to valid combinations of Min
Quantity and Discount. The following definition of the Discount
calculated table only generates combinations where the Discount
percentage is less than or equal to 10 times the Min Quantity:

Calculated table



The Discount table does not include combinations such as 3 for
Min Quantity and 50% for Discount. Therefore, when the Min Quantity
slicer selects 3, the Discount slicer only shows values less than or
equal to 30%. The relationship between two or more parameters is
implicitly found in the Discount table and directly affects the slicers
through cross-filtering.

Selecting top N products dynamically
Imagine needing a report like the one in Figure 9-4, where each
column filters a different number of products with the highest Sales
Amount. Each column shows the Sales Amount of only the top N
products, where N is determined by the column header. In this case,
each visible name of the TopN parameter is mapped to a different
number, used as the parameter value in the Top Sales measure.



FIGURE 9-4 The TopN Products parameter assigned to the report columns defines the
number of products considered for the Sales Amount calculation.

This visualization is hard to obtain in Power BI, because the Top N
visual-level filter can only be applied once in one visual. In this case,
every column has a different parameter for the TOPN function used
in the Top Sales measure.

The parameter table requires two columns: one for the visible name
(TopN Products) that contains the description of the parameter, and
the other column (TopN) is a number corresponding to both the result
of the parameter selection and the sort order of the TopN Products
values.

The TopN Filter calculated table can be defined with the following
code:

Calculated table



The Top Sales measure uses the selected value to filter the number
of top products by evaluating the Sales Amount measure:

Measure in the Sales table















CHAPTER 10

Static segmentation

Download sample files: https://sql.bi/dax-211

The static segmentation pattern classifies numerical values into
ranges. A typical example is the analysis of sales by price range.
You do not want to slice the data by individual price; instead you
want to simplify the analysis by grouping prices within ranges of
prices. The price ranges are stored in a configuration table and the
pattern requires the model to be entirely data-driven. In other words,
when the configuration table is updated, the model is updated
automatically without requiring any change to the DAX code.

Depending on the size of the data model, there are different options
for this pattern. On small models (up to a few million rows) the best
option is to use calculated columns and/or calculated relationships.
On larger models with hundreds of millions of rows, calculated
columns might increase the processing time of the model. Therefore,
for large models the best option is to build a calculated table
expanding the prices, thereby reducing to a minimum the number of
calculated columns in the larger tables.
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Basic pattern
You need to analyze sales sliced by price range. To attain this goal,
you build a configuration table that stores the price ranges; the price
should be greater than or equal to the Min Price and less than the
Max Price, as shown in Figure 10-1.

FIGURE 10-1 The configuration table defines the price ranges.

Then, you want to analyze sales by price range, obtaining a report
like Figure 10-2.



FIGURE 10-2 The report shows sales sliced by price range.

In the report, the VERY LOW row contains the sales with a net
price between 0 and 100.

In order to obtain the desired result, you need a relationship
between the configuration table (Price Ranges) and the Sales table. In
the example, we use Sales[Net Price] instead of Sales[Unit Price] to
determine the sales price, so to consider possible discounts. Indeed,
Sales[Net Price] might be different than Sales[Unit price] because of
discounts. The required relationship should use a “between”
condition for the join, which is not natively supported by the Tabular



engine. Nevertheless, in the Sales table we can add a calculated
column that stores the key of the price range for each specific row,
by using the following code:

Calculated column in the Sales table

When building the calculated column, you need to be careful not to
use functions that might reference the blank row, such as ALL and
VALUES. This is the reason we used DISTINCT instead of VALUES
to retrieve the price range key.

Next, you build a relationship between Sales and Price Ranges based
on the new calculated column, like in Figure 10-3.



FIGURE 10-3 The relationship is based on a calculated column.

Once the relationship is in place, you can slice sales by ‘Price
Ranges’[Price Range].

You need to make sure that the configuration table is properly
designed, so that each price belongs to only one price range. The
presence of overlapping segments in the configuration table can
generate errors in the evaluation of the PriceRangeKey calculated
column. If you want to make sure there are no mistakes in the
configuration table – such as overlapping ranges – you can generate
the Max Price column using a calculated column that retrieves the
value of Min Price for the next segment. This is shown in the
following sample code.

Calculated column in the Price Ranges table



You can also write a safer version of the calculated column that
writes a blank or generates an error in the event there are multiple
ranges active for one price, as in the following example:

Calculated column in the Sales table



The code shown in this pattern must satisfy the requirements for
calculated columns used in a relationship, in order to avoid circular
dependencies.

Price ranges by category
A variation of the static segmentation pattern is when the condition
to check is not a simple between, but rather a more complex
condition. For example, the requirement might be to use different
price ranges for different product categories: The LOW price range
for games and toys needs to be different from the LOW price range
for home appliances.

In this scenario, the configuration table contains an additional
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column that indicates the category the price range must be applied
to. Different categories might have different price ranges, as in
Figure 10-4.

FIGURE 10-4 The configuration table also contains the categories.

The pattern here is very similar to the basic pattern, the only
noticeable change being in the condition used to find the correct
price range key. Indeed, the search must be limited to the row in the
Price Ranges table with the category of the product being sold and
where the net price falls within the desired range:

Calculated column in the Sales table



Similarly, you can use any other condition if it is guaranteed that
only one row remains visible in the configuration table. In order to
make sure that the configuration table does not contain overlapping
ranges, you can generate the Max Price column using a calculated
column similar to the one used in the basic pattern. The important
difference is the use of ALLEXCEPT instead of REMOVEFILTERS,
so that the filter over ‘Price Ranges’[Category] coming from the
context transition is kept in the filter context:

Calculated column in the Price Ranges table



Price ranges on large tables
The static segmentation pattern requires the creation of a calculated
column in the Sales table. The column itself is typically rather small in
size, because it contains few distinct values. However, on very large
tables the column size might start to grow and you may face another
problem: the column needs to be computed for the entire table at
every data refresh. On a multi-billion-row table that is likely to be
partitioned, the column needs to be recomputed for the entire table
whenever one partition is refreshed. This slows down every refresh
operation.

In this scenario, it is possible to use a variation of the static
segmentation that works without adding any column in the Sales
table. Instead of building the relationship with the new calculated
column, this pattern uses Sales[Net Price] as the key for a
relationship with a new calculated table. Indeed, it is not possible to
create a relationship between Sales and the Price Ranges table
because the Price Ranges table is missing a suitable column.
Nevertheless, such column can be created by increasing the number



of rows in the configuration table.

The table we want to generate contains one row for each value of
Sales[Net Price] with the corresponding price range, like in Figure 10-
5.

FIGURE 10-5 The expanded configuration contains one row for each value in Net Price.

We renamed the original configuration table to Price Ranges
Configuration. The Price Ranges table can be created as a calculated
table using the following code:

Calculated table



This new table contains exactly one row for each distinct value of
the Sales[Net Price] column. Therefore, it is possible to create a
relationship between Sales and the new Price Ranges calculated table
based on the Net Price column, as shown in Figure 10-6.

FIGURE 10-6 The relationship is based on the Net Price column.

With this optimization, there is no need to create a new column in
Sales, because the model uses the existing Sales[Net Price] column to



setup the relationship. Therefore, no calculated column in Sales must
be recomputed during data refresh. The original Price Ranges
Configuration table should be hidden in the model in order to avoid
any possible confusion for the end users.

On smaller models, creating a calculated column is not an issue.
Therefore, the basic solution that does not involve new tables is to
be preferred. On larger models, this version reduces the processing
time.









CHAPTER 11

Dynamic segmentation

Download sample files: https://sql.bi/dax-212

The Dynamic segmentation pattern is useful to perform the
classification of entities based on measures. A typical example is to
cluster customers based on spending volume. The clustering is
dynamic, so that the categorization considers the filters active in the
report. Indeed, a customer might belong to different clusters on
different dates.

Basic pattern
You need to categorize customers based on spending. Using a
configuration table like Figure 11-1, you define the clusters.
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FIGURE 11-1 The configuration table defines the boundaries of each segment.

Every segment represents a classification for a customer based on
their Sales Amount computed over one year. Using this configuration,
you want to analyze how many customers belong to each segment
over time. One same customer might be Silver in one year, and
Platinum in a different year.



FIGURE 11-2 The report shows the number of customers in each segment for each year.

In the report in Figure 11-2, the first row shows that in 2007 there
were 2,142 customers in the SILVER segment. By adding a Category
slicer to this report, we segment our customers based on their
purchases in the chosen category alone, as shown in Figure 11-3.

FIGURE 11-3 The report shows customers in each segment considering sales of the given
category alone.

Being dynamic, the pattern is implemented through a measure. The
measure finds the customers who belong to the selected cluster. It
then uses this table as a filter in CALCULATE to restrict the
calculation to the customers found. KEEPFILTERS is needed to
intersect the customers list with the customers found:

Measure in the Sales table



The measure must iterate through all the segments for each
customer, to make sure the total is correct with an arbitrary selection
of segments, as shown in Figure 11-4.

FIGURE 11-4 The report shows an accurate total for each year summing only the selected
segments.

By nature, this calculation is non-additive. The previous
implementation works at the year level only, which is a good idea to
compute the number of customers. This way, the same customer is
never summed twice. However, for other measures the



segmentation could require an additive behavior. For example,
imagine a measure showing the Sales Amount of the customer in the
segment that should also show a total over multiple years. The
following measure implements a calculation that is additive across
the years:

Measure in the Sales table

The result shown in Figure 11-5 provides a total in each row,
summing the measure computed for each year.

FIGURE 11-5 The Sales Seg. Customers measure is additive over the years.

You need to make sure that the configuration table is designed



properly, so that each possible value of Sales Amount only belongs to
one segment. The presence of overlapping segment boundaries in
the configuration table can generate errors in the evaluation of the
CustomersInSegment variable. If you want to make sure there are no
mistakes in the configuration table – such as overlapping ranges –
you can generate the Max Sales column using a calculated column
that retrieves the value of Min Sales for the next segment. This is
shown in the following sample code:

Calculated column in the Customer Segments table

Clustering by product growth
The dynamic segmentation pattern is very flexible, because it allows
you to categorize entities based on dynamic calculations. Moreover,
one entity might belong to different clusters. A good example of its
flexibility is the following: you want to cluster products based on their
yearly growth in sales.

In the sample model, if the year-over-year growth of a product falls
within the +/-20% range, then it is considered stable; if its growth is
lower than -20%, then it is dropping; if it is over 20%, then it is



growing. The same product might be dropping in 2008 and stable in
2009, as highlighted in Figure 11-6.

FIGURE 11-6 The same product belongs to different clusters, in different years.

You start by building the segmentation table. It is shown in Figure
11-7.

FIGURE 11-7 The configuration table defines the boundaries of each segment.

Once the table is in the model, the code to use is a slight variation



of the basic model. This time, instead of determining the customers
who belong to a segment based on their spending volume, it
determines the products that belong to a segment based on product
growth. The only difference in the measure is the reference to the
Growth % measure:

Measure in the Sales table

Measure in the Sales table



Clustering by best status
The dynamic segmentation pattern is also useful to cluster
customers based on sales, assigning each customer to exactly one
cluster depending on the highest sales for that customer over time.

If the assignment of the cluster to each customer is static, then this
is better implemented through the static segmentation pattern.
However, if the assignment has to be dynamic but you do not want a
customer to belong to different clusters over time, then the dynamic
segmentation pattern is the optimal choice.

Starting with the configuration table in Figure 11-8, we assign
customers to one cluster depending on the highest yearly sales.
Therefore, a customer is PLATINUM if – in a year – they exceeded
the amount of 500.00 spent. If it is determined that the customer be
platinum, their sales are reported under the PLATINUM segment for



all the years.

FIGURE 11-8 The configuration table defines the boundaries of each segment.

In the report shown in Figure 11-9, the sales reported under
PLATINUM are the sales of all customers that reached the platinum
level in one of the selected years. If their sales are reported under
PLATINUM, they are not reported in any other cluster.

FIGURE 11-9 Sales are sliced by best segment reached in a year.

The measure in the report is a variation of the dynamic
segmentation pattern. This time it is not necessary to iterate the
calculation over the years. The CustomersInSegment variable



computes the max sales amount for each year in the report using the
Max Yearly Sales measure, which also ignores any other filter over the
Date table. The result is applied as a filter to compute the Sales
Amount measure:

Measure in the Sales table

Measure in the Sales table







CHAPTER 12

ABC classification

Download sample files: https://sql.bi/dax-213

The ABC classification pattern classifies entities based on values,
grouping entities together that contribute to a certain percentage of
the total. A typical example of ABC classification is the segmentation
of products (entity) based on sales (value). The best-selling products
that contribute to up to 70% of the total sales belong to cluster A.
The products making up the next 20% of sales are in cluster B,
whereas the products representing the last 10% of sales, belong to
class C. Hence, the pattern is named after the three clusters (ABC).

You can use this pattern to determine the core business of a
company, typically in terms of best performing products or best
customers. You can find more information on ABC classification at
http://en.wikipedia.org/wiki/ABC_analysis.

ABC classification can be either static or dynamic. Static ABC
classification assigns a class to each product statically, so that the
class of a product does not change depending on the filters being
applied to the report. Dynamic ABC classification computes the class
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of each product dynamically, based on the report filters. As such, in
the dynamic ABC classification the clustering of product needs to be
done in measures, resulting in a less efficient – albeit more flexible –
algorithm.

There is also a third pattern for this type of clustering, which lies in-
between the static and the dynamic versions: the snapshot ABC. For
example, if one needs to update the ABC class to a product on a
yearly basis, they can accomplish this by creating a snapshot table
containing the ABC class of a product for every year.

Static ABC classification
In the example, we cluster products based on sales. Each product is
statically assigned to a class that can be used on the rows and
columns of a report. The report in Figure 12-1 shows that there are
493 products in class A, making over 21M in sales, whereas 1,455
products in class C only generate 3M in sales.

FIGURE 12-1 The ABC class can be used to filter the products into a given class.

The static ABC classification is based on calculated columns. You



need four new calculated columns, as shown in Figure 12-2.

FIGURE 12-2 The ABC static pattern requires four calculated columns.

The four calculated columns are:

Product Sales: the total sales for the product (current row).

Cumulated Sales: the running total of Product Sales ranked
from largest to smallest.

Cumulated Pct: the percentage of Cumulated Sales against
the grand total of sales.

ABC Class: the class of the product, which could be A, B, or C.

You define the calculated columns using the following DAX
formulas:

Calculated Column in the Product table

Calculated Column in the Product table



Calculated Column in the Product table

Calculated Column in the Product table

The product class is determined by the value of Cumulated Pct. As



you can see in Figure 12-3, when the value is below 70% the
product class is still A, when it is over 70% the product class
becomes B.

FIGURE 12-3 Products that fall over the 70% threshold in cumulated values are in class B.

The four columns can be replaced with a single calculated column
containing the complete logic, using several variables:

Calculated Column in the Product table

Using this version of the code reduces the size of the model,
because it creates one column in place of the four needed in the
earlier version. Nevertheless, on databases with a large number of
products, the column calculation might require an excessive amount
of memory.



Snapshot ABC classification
You might need to assign the ABC class to each product on a yearly
basis, so that the same product can fall into different ABC classes in
different years. In this case, you should build a solution with an
additional snapshot table containing the correct ABC class for each
product and year. The goal is to produce a report like the one in
Figure 12-4 – showing for each year, the number of products that fell
in class A, B or C.

FIGURE 12-4 The ABC classification evaluates the product class every year.

The model requires an additional table to store the ABC class for
each year and product. The ABC by Year table does not have
relationships with other tables in the model and it contains the
product key, the year, and the assigned class, as shown in Figure
12-5.



FIGURE 12-5 The calculated table that computes the ABC class has one row for each year
and product.

The code that computes the table is the following:

Calculated table





The result of this code is the final one, shown in Figure 12-5. It
helps to visualize the content of the ClassByYearProduct variable,
which shows the columns added to the intermediate calculation
through several steps. You can see this in Figure 12-6.

FIGURE 12-6 The intermediate calculation evaluated in the ClassByYearProduct variable.

Once the table is loaded in the model, the ABC by Year table can be
used as a filter remapping the data lineage of ProductKey and
Calendar Year to the corresponding columns in the Product and Date
tables. For example, the report shown at the beginning of the section
uses these two measures:

Measure in the Sales table



Measure in the Sales table

By using TREATAS both measures move the filter from the
snapshot to the Product and the Date tables, obtaining the desired
result. It is important to apply ProductKey and Calendar Year in the
same filter, otherwise the measure could include combinations of
products and years that are not included in the selected ABC



classes.

There is an alternative solution that works better in models with a
larger number of products – by using expanded tables. As you can
see in Figure 12-7, this requires an intermediate Years table linked to
Date through a relationship with a bidirectional filter (so it is not
available in the Excel Power Pivot sample).

FIGURE 12-7 The Years calculated table enables a relationship propagation from Date to
ABC by Year.

The Years table is easily computed using a DISTINCT function:

The measures are simpler – though harder to understand –
because they rely on table expansion:



Measure in the Sales table

Measure in the Sales table

The snapshot ABC classification is more dynamic than the static
version. The calculated table requires some computational effort.
Nevertheless, it is computed at data refresh time and it is very quick
at query time. Therefore, the snapshot ABC classification is a very
good compromise between speed and flexibility. If flexibility is the
main goal, then the slower dynamic ABC classification pattern is a
better fit.

Dynamic ABC classification
The dynamic ABC pattern is the most flexible of the three patterns
presented, and consequently it is the slowest and most memory-
hungry. The goal is to dynamically compute the number of products,
the sales amount or any other measure determining the set of
products that belong to the given ABC class in the context of the
report. For example, in Figure 12-8 the classes are determined
considering only the Cell phones category; when the user selects a



different category, the whole report is computed with the new filters.

FIGURE 12-8 The ABC classification segments the products dynamically, based on the
current selection.

Being dynamic, the whole logic is defined in a measure that
retrieves the list of products in the desired class, and then uses this
list as a filter over the required calculation. Moreover, from the model
point of view, there is the need to create an additional ABC Classes
table that contains the three classes with their boundaries. This is
shown in Figure 12-9.

FIGURE 12-9 The ABC Classes table contains the definition of the boundaries for each class.

The measure that computes the ABC Sales Amount is the following:

Measure in the Sales table





The complexity of the formula mainly depends on the number of
products – the larger the number of products, the slower and more
memory-intensive it becomes. Over around ten thousand products,
the code will likely start to be too slow to produce an interactive
report. This defeats the initial purpose of obtaining a dynamic report.

Finding the ABC class
This pattern describes how to find the ABC class of a product
dynamically, producing the result in a measure instead of using a
column to classify an existing item. Other ABC segmentation
patterns aim to split products into different classes and compute a
value, like the sales amount or the number of products. This pattern
is useful when you need to show the ABC class of a product
dynamically, producing a report like Figure 12-10: The report shows
for each product of the Computers category, its ABC class in 2008.

FIGURE 12-10 The ABC classification segments the products dynamically, based on the
current selection.

The measure that computes the ABC class is a variation of the
dynamic ABC classification. This time, the measure does not need to



compute the ABC class of all the products – it is enough to compute
the ABC class of the selected product. Therefore, once it computes
the list of all products along with their sales, the measure uses the
information to compute the correct values only for the current
product:

Measure in the Sales table









CHAPTER 13

New and returning customers

Download sample files: https://sql.bi/dax-218

The New and returning customers pattern helps in understanding
how many customers in a period are new, returning, lost, or
recovered. There are several variations to this pattern, each with
different performance and results depending on the requirements.
Moreover, it is a very flexible pattern that allows the identification of
new and returning customers, or the computation of these
customers’ purchase volume – also known as sales amount.

Before using this pattern, you need to clearly define the meaning of
new and returning customers, as well as when a customer is lost or
recovered. Indeed, depending on the definition you give to these
calculations, the formulas are quite different both in their writing and
– most important – in performance. Even though you could use the
most flexible formula to compute any variation, we would advise you
to spend some time experimenting in order to find the best version
that fits your needs. The most flexible formula is very expensive from

https://sql.bi/dax-218


a computational point of view. Therefore, it might be slow even on
small datasets.

Introduction
Given a certain time period, you want to compute these formulas:

Customers: the number of customers who made a purchase
within that time period.

New customers: the number of customers who made their first
purchase within that time period.

Returning customers: the number of customers who have
already purchased something in the past, and are returning in
that time period.

Lost customers: the number of customers whose last purchase
occurred at least 2 months before the start of the current
period.

Recovered customers: the number of customers who were
considered lost in a previous time period, and then made a
purchase in the current period.

The report looks like the one in Figure 13-1.



FIGURE 13-1 The report shows the main calculations of the pattern.

As shown in the report, in January 2007 all customers were new. In
February, 116 customers were returning and 1,037 were new, for a
total of 1,153 customers. In March, 603 customers were lost.

While the measures computing the number of customers and the
number of new customers are easy to describe, calculating the
number of lost customers is already complex. In the example, let us
look at a customer lost two months after their last purchase.
Therefore, the number reported (603) is made up of customers who
made their last purchase in January. In other words, out of the 1,375
customers in January 2007, 603 did not buy anything in February,
March, and the following months; for this reason, we consider them
lost at the end of March.

The definition of lost customers may be different in your business.
For example, you might define a customer as lost if they made their
last purchase two months ago, even though you already know that



they will be making another purchase next month. Imagine a
customer who bought something in January and April: are they lost
at the end of March or not? The answer leads to different
formulations of the same calculation. Indeed, we consider the
customer as being temporarily lost at the end of March, because we
know the same customer will be recovered later. A report counting
the temporarily-lost customers (who did not buy anything for two
months, but then made a purchase afterwards) is visible in Figure
13-2.

FIGURE 13-2 The report shows temporarily-lost customers, along with the number of
recovered customers.

The number of temporarily-lost customers is higher than the
number of lost customers previously shown. The reason is that many
of the temporarily-lost customers will buy something in future
months. In that case, the report counts them as recovered



customers in the month when they make a new purchase.

Another important element to take into account when selecting the
right pattern is how you want to look at filters on the report. If the
user selects a category of products, how does this filter affect the
calculation? Let us say that you filter the Cell Phones category. Do
you consider a customer as new the first time they buy a cell phone?
If so, then a single customer will be new multiple times, depending
on the filter. Otherwise, if you want to consider a customer as new
only once, then you need to ignore the filters when computing the
number of new customers. Similarly, all the remaining measures
might or might not be affected by the filters.

Let us clarify the concept with another example. Figure 13-3 shows
the raw data of a reduced version of Contoso with only three
customers.

FIGURE 13-3 The report shows three customers along with their purchase history.

Considering the data in Figure 13-3, can you tell when Dale Lal is a
new customer, if a user added a filter for Games and Toys? He
bought a toy for the first time in April, even though he was already a
customer for Cameras and camcorders products. Now focus on
Tammy Metha: is she to be considered lost two months after her
game purchase in February? She did not buy any other game
product, even though she bought products of other categories.
Answering these questions is of paramount importance to support



your choice of the pattern that will best suit your specific business
needs.

Additionally, counting customers is useful, but sometimes you are
interested in analyzing the amounts sold to new, returning, and
recovered customers. Or you might want to estimate the amount lost
because of customer losses, in a report like the one in Figure 13-4.
In the report we used the average sales volumes of our lost
customers over the last 12 months, as an estimate for lost sales.

FIGURE 13-4 The report shows the sales amount of new, returning, recovered, and lost
customers.

Another important note is to think about how the formulas count the
different statuses of a customer inside each time period. For
example, if you consider a full year, then it is possible that the same
customer is new, temporarily lost, returning, and then permanently
lost – all within the same period. On a given day, the status of a
customer is well defined. However, throughout longer time frames
the same customer can be in different statuses. Our formulas are
designed to account for the customer in all their statuses. Figure 13-
5 shows a sample report that only filters and shows one customer:
Lal Dale.



FIGURE 13-5 The same customer is both new and lost in the same year.

The customer is both new and lost in the same year. Lal Dale was
a returning customer for a few months, but not at the year level
because he was new during the year. In Figure 13-6 the same report
filters out January, thus showing the customer as returning three
times within the period, and never showing them as a new customer.

FIGURE 13-6 Filtering out January, when the customer was new, the customer now
appears as returning in the period.

If we were to describe all the possible combinations of measures in



this pattern, this alone would require an entire book. Instead, we
show some of the most common patterns, leaving to the reader the
task of changing the formulas in case their scenario is different from
any of the patterns described.

Finally, the New and returning customers pattern requires heavy
calculations. Therefore, we present both a dynamic and a snapshot
version of the formulas.

Pattern description
The pattern is based on two types of formulas:

Internal formulas: their goal is to compute the relevant dates
for a given customer.

External formulas: these are the formulas used in reports.
They use the internal formulas to compute the number of
customers, the sales amount, or any other measure.

For example, in order to compute the number of new customers, for
each customer the internal formula computes the date of their first
purchase. The external formula then computes the number of
customers whose first purchase happens to fall within the time
period currently filtered.

An example is helpful to better understand this technique. Look at
Figure 13-7, which shows the reduced dataset we use in order to
explain the different formulas.



FIGURE 13-7 The report shows a few customers, along with their purchase history.

Using this data as an example, think about how you can compute
the number of new customers in March. The new customers external
measure checks how many customers made their first purchase in
March. To obtain its result, the external formula queries the internal
formulas on a customer-by-customer basis, checking their first
purchase. The internal formula returns March 14 for the first
purchase of Gerald Suri, whereas the first purchases of the other
customers occurred earlier than that. Consequently, the external
formula returns 1 as the number of new customers.

Other measures behave the same way, although each comes with
peculiarities worthy of a more complete description.

As a first example of code, look at the internal formula that
computes the date when a customer must be considered new. Be
mindful, each example has different formulas and we provide greater
detail on this code in subsequent sections. This first example of DAX
is reported here only as an introduction:

Measure (hidden) in the Sales table



The internal formula is then used by the external formula, which
computes the number of customers who are new in the given period:

Measure in the Sales table

Using this approach, the pattern is more flexible. Indeed, if you
need to change the logic that determines when a customer is to be
considered new, lost, or temporarily lost, you only need to update the
internal formulas – thus leaving the external formula untouched. Still,



we need to raise a big warning for our readers: the formulas shown
in this pattern are extremely complex and delicate in the way the
filter context is handled. You will certainly need to change them to
suit your needs. But do so only after having thoroughly understood
their behavior; indeed, each line of DAX in this pattern is the result of
hours of thinking and endless tests, as we systematically had to
make sure that it was the correct way to write it. In other words, get
ready to walk on eggshells with this pattern; we certainly had to!

We organized the patterns in two families: dynamic and snapshot.
The dynamic version computes the measures in a dynamic way,
considering all the filters of the report. The snapshot version
precomputes the values of the internal measures in calculated
tables, in order to speed up the calculation of the external measures.
Therefore, the snapshot version provides less flexibility, albeit with
improved speed.

We also provide three different implementations, depending on how
the measure should consider the active filters in the report:

Relative: a customer is considered new the first time they buy
one of the products selected in the report.

Absolute: a customer is considered new the first time they buy
a product, regardless of any filter present in the report.

By category: a customer is considered new the first time they
buy a product from any of the product categories selected in
the report. If they buy two products of the same category then
they are considered new only once, whereas if they buy two
products of different categories then they are considered new
twice.

You can find a more complete explanation of the various



calculations in the corresponding section of each pattern. Our
suggestion is to read the chapter start-to-finish before attempting an
implementation on your model. It is better to understand your
requirements well before proceeding with the implementation, rather
than only finding out at the end that you chose the wrong pattern.

Finally, the demo files of this pattern include two versions: the full
version includes the complete database, whereas the base version
only includes three customers. The base version is useful to better
understand the pattern, because you can easily check the numbers
thanks to the limited number of rows in the model. The full version is
more useful to evaluate the performance of the different calculations.

Internal measures
There are three internal measures:

Date New Customer: returns the date when the customer is to
be considered new.

Date Lost Customer: returns the date when the customer is to
be considered permanently lost, checking that there are no
sales in following time periods.

Date Temporary Lost Customer: returns the date when the
customer might be lost, without checking whether the
customer comes back in a following period.

These measures are not intended to be used in reports – they exist
only to be used by the external measures. The code of the internal
measures is different for each pattern.

External measures
Each pattern defines several measures to count customers and



evaluate sales in the various customer states:

# New Customers: counts the number of customers who are
new.

# Returning Customers: counts the number of customers who
were new in a previous period and made a new purchase
within the time period considered.

# Lost Customers: counts the number of customers permanently
lost.

# Temporarily Lost Customers: counts the number of customers
who are only lost when we look at the current time period,
even though they might return in a later period.

# Recovered Customers: counts the number of customers who
were temporarily lost and then made a new purchase within
the time period considered.

Sales New Customers: returns the value of Sales Amount by
filtering only the new customers.

Sales Returning Customers: computes the value of Sales Amount
by filtering only the customers who were new in a previous
period and made a new purchase in the period considered.

Sales Lost Customers (12M): computes the value of Sales Amount
for 12 months prior to the start of the selected time period,
filtering only customers permanently lost in the selected
period.

Sales Recovered Customers: returns the value of Sales Amount
filtering only customers who were previously temporarily lost
and who made a new purchase in the period considered.

The code of the external measures is very similar in all the



patterns. There are minor variations for some scenarios that are
highlighted when we describe the individual patterns.

How to use pattern measures
The formulas presented in the pattern can be grouped into two
categories. The measures starting with the # prefix compute the
number of unique customers by applying a certain filter. Usually
these measures are used as-is and are optimized for this purpose.
For example, the following measure returns the number of new
customers:

Measure in the Sales table

The measures that do not start with the # prefix create a filter of
customers that is applied to another measure. For example, the
measures with the Sales prefix are measures that apply a filter of
customers to the Sales Amount measure. The following measure can
be reused to compute other measures by just changing the Sales



Amount measure reference in the last CALCULATE function:

Measure in the Sales table

In each pattern we show the two measures (with the # and Sales
prefixes) when there are differences in the measure structure, even
just for performance optimization. If the two measures only differ by
the calculation made in the last CALCULATE function, then we only
include the # prefix version of the measure.

Dynamic relative
The Dynamic relative pattern takes into account all the filters in the
report for the calculation. Therefore, if the report filters one category
(Audio, for example), a customer is reported as new the first time
they buy a product of the Audio category. Similarly, a customer is
considered lost a certain number of days after they last purchased a
product of the Audio category. Figure 13-8 is useful to better
understand the behavior of this pattern.



FIGURE 13-8 The only customer visible (Lal Dale) is considered as new multiple times, for
different categories.

The report only takes one customer into account: Lal Dale. He is
reported as new in January, when Cameras and camcorders is
selected, and he is also considered new in April, for the Games and
Toys category. All the other measures behave similarly, by
considering the filter where they are evaluated.

Internal measures
The internal measures are the following:

Measure (hidden) in the Sales table

Measure (hidden) in the Sales table



Measure (hidden) in the Sales table

New customers
The measure that computes the number of new customers is the
following:

Measure in the Sales table



The code computes the date when each customer is new.
ALLSELECTED is useful for optimization purposes: it lets the engine
reuse the value of the CustomersWithNewDate variable in multiple
executions of the same expression.

Then, in CustomersWithLineage the formula updates the lineage of
CustomersWithNewDate to let the variable filter Sales[CustomerKey] and
Date[Date]. When used as a filter, CustomersWithLineage makes the
customers only visible on dates when they are considered new. The
final CALCULATE applies the CustomersWithLineage filter using
KEEPFILTERS to intersect with the current filter context. This way
the new filter context ignores customers that are not new in the
range of dates considered.

In order to apply the new customers as a filter for another measure
like Sales Amount we need a slightly different approach, as shown in
the following Sales New Customers measure:

Measure in the Sales table



The NewCustomers variable holds a list of the values in
Sales[CustomerKey] corresponding to the new customers, obtained by
checking whether the @NewCustomerDate is within the filter context
of the current evaluation. The NewCustomers variable obtained this
way is then applied as a filter to compute the Sales Amount measure.
Even though the variable contains two columns (Sales[CustomerKey]
and @NewCustomerDate), the only column actively filtering the model
is Sales[CustomerKey], because the newly added column does not
share the lineage with any other column in the model.

Lost customers
The measure computing the number of lost customers needs to
count customers that are not part of the current filter context. Indeed,
in March we might lose a customer who made a purchase in
January. Therefore, when filtering March the customer is not visible.
The formula must look back at January to find that customer. This is
the reason why the structure of the code is different from the New



Customers measure:

Measure in the Sales table

The CustomersWithLostDate variable computes the date of loss for
each customer. LostCustomers filters out customers whose date of
loss is not in the current period. Eventually, the measure computes
the number of customers left by counting the rows in LostCustomers
that correspond to the customers whose date of loss falls within the
period visible in the current filter context.

Temporarily-lost customers
The measure computing the number of temporarily-lost customers is
a major variation of the measure computing the lost customers. The
measure must check that in the current context the customer who is
potentially lost did not make a purchase prior to the date when they
would have been lost. This is the code that implements this



calculation:

Measure in the Sales table

The measure first computes the potential date of loss of each
customer; it applies a filter on the date so that it only considers



transactions made before the start of the current time period. Then, it
checks which customers have a loss date that falls within the current
period.

The resulting table (PotentialTemporarilyLostCustomers) contains the
customers that can be potentially lost in the current period. Before
returning a result, a final check is required: these customers must
not have purchased anything in the current period before the date
when they would be considered lost. This validation happens by
computing TemporarilyLostCustomers, which checks for each
customer whether there are sales in the current period before the
date when the customer would be considered lost.

Recovered customers
The number of recovered customers is the number of customers that
were temporarily lost before a purchase was made in the current
period. It is computed by the following measure:

Measure in the Sales table



The CustomersWithLostDateComplete variable computes the
temporarily-lost date for the customers. Out of this list, the
CustomersWithLostDate variable removes the customers who do not
have a temporarily-lost date. The ActiveCustomers variable retrieves
the first purchase date for the customers in the current selection.
The RecoveredCustomers variable filters customers that are in both
ActiveCustomers and CustomersWithLostDate lists and have a
transaction date greater than the temporarily-lost date.

Finally, the Result variable counts the recovered customers.



Returning customers
The last measure in the set of counting measures is # Returning
Customers:

Measure in the Sales table

The measure first prepares a table in CustomersWithNewDate with
the first purchase date for every customer. The ExistingCustomers
variable filters out all the customers whose date is not strictly earlier
than the start of the currently selected period. What remains in
ExistingCustomers is the set of customers who already purchased
products before the current period started. Therefore, if those
customers also made purchases within the current period, then they
are returning customers. This last condition is obtained by combining
ExistingCustomers with the customers active in the selected period.



The result in the ReturningCustomers variable can be used to count
the returning customers – as in this measure – or to filter them in a
different calculation.



Dynamic absolute
The Dynamic absolute pattern ignores the filters on the report when
computing the relevant dates for the customer. Its implementation is
a variation of the basic Dynamic relative pattern, with a different set
of CALCULATE modifiers to explicitly ignore filters.

The result is an absolute assignment of the status of a customer
regardless of report filters, as shown in Figure 13-9: Dale Lal is
considered new in January when Games and Toys is selected, even
though he purchased cameras and no games.

FIGURE 13-9 Lal Dale is considered new, returning, and lost regardless of the category
used in the visual.

The only measure that changes depending on the category is #
Customers, which shows when Lal Dale purchased products. All the
other measures ignore the filter on the product: customers are new
only the first time they make a purchase regardless of the report
filter.



Internal measures
The internal measures are the following:

Measure (hidden) in the Sales table

Measure (hidden) in the Sales table

Measure (hidden) in the Sales table



As shown in the previous code, the internal measures are designed
to ignore all filters other than the ones on Customer – with the
noticeable exception of Date Temporary Lost Customer which needs to
also consider the filters on Date.

Please note that the internal measures have been designed to
behave properly when called from the external measures. This is the
reason why ALLEXCEPT explicitly keeps the filter on
Sales[CustomerKey] in a somewhat unusual way. If called within an
iteration that includes that column, the internal measures do not
remove the filter, thereby observing the requirements of the external
measure.

New customers
The measure that computes the new customers is the following:

Measure in the Sales table



There are two things to note about this measure. First, the filter in
the calculation of CustomersWithNewDate uses ALLEXCEPT to ignore
any filter apart from the ones on the Customer table. Second, in order
to check whether a customer is new, the measure filters the content
of CustomersWithNewDate. It then counts the row in the NewCustomers
variable, instead of using TREATAS as the corresponding measure
in the Dynamic relative pattern. This technique may turn out to be
slower than the one used in the Dynamic relative pattern; it is still
required because it needs to count a customer even though they
might not be visible due to the current filter context.

Lost customers
The measure computing the number of lost customers is the
following:

Measure in the Sales table



Its structure is close to the New Customer measure, the main
difference being in the calculation of the CustomersWithLostDate
variable.

Temporarily-lost customers
The measure computing the number of temporarily-lost customers is
a variation of the measure computing the lost customers:

Measure in the Sales table



Its behavior is very close to the corresponding measure in the
Dynamic relative pattern. The main differences are the use of
ALLEXCEPT in the evaluation of CustomersWithLostDateComplete and
ActiveCustomers. In CustomersWithLostDateComplete all the filters other



than Customer are removed, whereas in ActiveCustomers the filters
are not removed from Date and Customer.

Recovered customers
The number of recovered customers is the number of customers that
were temporarily lost before a purchase made in the current period.
It is computed by the following measure:

Measure in the Sales table



Its behavior is very close to the corresponding measure in the
Dynamic relative pattern. The main difference is the use of
ALLEXCEPT in the evaluation of the CustomersWithLostDateComplete
and ActiveCustomer variables to correctly set the required filter.

Returning customers
The last measure in the set of counting ones is the # Returning
Customers:

Measure in the Sales table

Its behavior is very close to the corresponding measure in the
Dynamic relative pattern. The main difference is the use of



ALLEXCEPT in the evaluation of the CustomersWithNewDate and
ActiveCustomers variables, to accurately set the required filter.



Generic dynamic pattern (dynamic by
category)

The generic dynamic pattern is an intermediate level between the
absolute and the dynamic patterns. The pattern ignores all the filters
from the report except for attributes determined by the business
logic. In the examples used in this section, the measures are local to
each product category. The result is dynamic for product category
and absolute for all the other attributes in the data model. For
instance, one customer can be new for a product category and a
returning customer for another product category within the same
month. The same customers might be considered new multiple times
if they buy different categories of products over time. In other words,
the analysis of new and returning customers is made by product
category. You can customize the pattern by replacing product
category with one or more other attributes, so that it fits your
business logic.

We purposely avoided excessive optimizations when writing the
code of this pattern: the primary goal of this set of measures is to
make them easier to update. If you plan on modifying the pattern to
fit your needs, this set of measures should be a good starting point.

The rules of this pattern are the following:

The same customer might be considered a new customer
multiple times, one for each combination of dynamic attributes
(product category in the example).

Customers are considered returning customers if they already
purchased the same combination of dynamic attributes
(product category in the example) they are purchasing in the



selected period.

Customers are temporarily lost if they did not purchase a
combination of dynamic attributes (product category in the
example) for two months, even though they may have
purchased different combinations of dynamic attributes
(product category in the example) in the meantime.

Customers are considered recovered customers if they make
a new purchase of products of the very combination of
dynamic attributes (product category in the example) for which
they were temporarily lost.

It is important to note that the pattern detects the customers, not
the combination of dynamic attributes and customers – like customer
and product category in the example. Therefore, the measures with
the # prefix always return the number of unique customers, whereas
the measures with the Sales prefix always evaluate the Sales Amount
measure regardless of the combination of dynamic attributes
(product category in the example) for which a customer is
considered new/lost/recovered. The difference is visible by filtering
two or more combinations of the dynamic attributes. For example, by
filtering two product categories, the Sales measures for new and
returning customers could add up to more than the value of Sales
Amount; indeed, the same amount can be computed considering the
same customer both new and returning, because of their having
different states for different categories.

Your requirements might be different from those assumed in this
example. In that case, as we already stated in the introduction, you
need to very carefully understand the filtering happening in all the
measures before implementing any change. These measures are
quite complex and easy to break with small changes.



Internal measures
The internal measures are the following:

Measure (hidden) in the Sales table

Measure (hidden) in the Sales table

Measure (hidden) in the Sales table



As shown in this code, the internal measures are designed to
ignore filters other than the ones on Customer and Product[Category].

New customers
The measure that computes the new customers is the following:

Measure in the Sales table



In this version of the measure, the CustomersWithNewDate variable
might compute a different date for each product category. Indeed,
SUMMARIZE uses the Product[Category] column as a group-by



condition. Consequently, TREATAS specifies the lineage for the
three columns in CustomersWithNewDate so that the
@NewCustomerDate column can be used later to filter or join the
Date[Date] column.

For performance reasons, the CustomersWithNewDate and
CustomersCategoryNewDate variables are invariant to the filter context
of cells in a report, so their result is computed only once for a single
visualization. In order to get the actual new customers, it is
necessary to filter those combinations that are not visible in the filter
context where # New Customer is evaluated. This is accomplished by
the NATURALINNERJOIN in ActiveNewCustomers, which joins the
combinations of customer, date, and category visible in the filter
context (ActiveCustomersCategories) with the combinations in
CustomersCategoryNewDate.

The NewCustomers variable removes the duplicated customers that
could be new for different categories in the same period. This way,
NewCustomers can be used as a filter in following calculations or it
can be counted to obtain the number of new customers, as the # New
Customers measure does.

The Sales New Customers measure is similar to # New Customers, the
only difference is the Result variable that uses the NewCustomersCat
as a filter in CALCULATE instead of just counting the rows of the
NewCustomer variable. Therefore, we show here only the last part of
the code, using ellipsis for the unchanged sections:

Measure in the Sales table



Lost customers
The measure computing the number of lost customers is the
following:

Measure in the Sales table



In this version of the measure, the CustomersWithLostDate variable
might compute a different date for each product category. The
reason is that SUMMARIZE uses the Product[Category] column as a
group-by condition and that the customer might have different dates



of loss – one for each category.

The LostCustomersCategories variable only filters the combinations of
customers and categories that have a lost date included in the
selected time period. Similarly to the New Customers measure, the
LostCustomers variable removes the duplicated customers so it can
be used both as a filter and to count the lost customers.

Temporarily-lost customers
The measure computing the number of temporarily-lost customers is
a variation of the measure computing the lost customers:

Measure in the Sales table







The CustomersWithLostDateComplete variable needs to enforce the
filter on the Product[Category] column by using the VALUES function
– though the filter might not be directly applied to that column but
rather, to other columns cross-filtering Product[Category].

Similarly, the ActiveCustomersCategories variable creates a table of
combinations of Sales[CustomerKey] and Product[Category] along with
the first purchase date for each combination of customers and
product category. This table is then joined to the
PotentialTemporarilyLostCustomers variable, which contains the
content of CustomersWithLostDate visible in the current selection. The
result of the join filtered by date over the limit of the temporarily-lost
date is returned in the TemporarilyLostCustomersCategories variable.

Finally, to avoid counting the same customer multiple times, the
measure extracts the customer key before finally counting the
number of temporarily-lost customers.

Recovered customers
The number of recovered customers is the number of customers that
were temporarily lost before a purchase was made in the current
period. It is computed by using the following measure:

Measure in the Sales table





The measure first determines the customers that were temporarily
lost before the current date, also summarizing by Product[Category].
Because the Sales[CustomerKey] and Product[Category] columns are
part of the tables stored in the CustomersWithLostDateComplete and



ActiveCustomers variables, the join made in
RecoveredCustomersCategories returns a table that has both columns.
This ensures that a customer that was to be considered lost for a
given category is recovered only if they buy a product of the same
category. The customer might appear multiple times in this table, so
duplicated customers are removed in RecoveredCustomersCategories
in order to count or filter only the unique recovered customers. The
Sales Recovered Customers measure is similar to # Recovered
Customers; the only difference is the Result variable that uses
RecoveredCustomersCat as a filter in CALCULATE instead of just
counting the rows of the corresponding RecoveredCustomersCategories
variable in the # Recovered Customers measure. Therefore, here we
only show the last part of the code, using ellipsis for the identical
sections:

Measure in the Sales table

Returning customers
The last measure in the set of counting measures is # Returning



Customers:

Measure in the Sales table



The measure creates a CustomersWithNewDate variable which
obtains the first sale date for each combination of customer and
product category. This result is joined to the combination of
customers and product category that is present in the current filter
context over Sales. The result is the set of returning customers in the
ReturningCustomers variable that is counted in the # Returning
Customer measure. The Sales Returning Customers measure uses the
following ReturningCustomersCat variable as a filter instead of the
ReturningCustomers variable. Here we only write its final lines of code,
all the remaining code being identical to the previous formula:

Measure in the Sales table



Snapshot absolute
Computing new and returning customers dynamically is a very
expensive operation. Therefore, this pattern is oftentimes
implemented by using precomputed tables (snapshots) to store the
most relevant dates at the desired granularity.

By using precomputed tables, we get a much faster solution albeit
with reduced flexibility. In the pre-calculated absolute pattern, the
state of new and returning customers does not depend on the filters
applied to the report. The results obtained by using this pattern
correspond to those of the Dynamic absolute pattern.

The pattern uses a snapshot table containing the relevant states of
each customer (New, Lost, Temporarily lost, and Recovered) shown
in Figure 13-10.



FIGURE 13-10 The snapshot table contains the full history for each customer.

The New and Lost events are unique for each customer, whereas
the Temporarily lost and Recovered events can have multiple
occurrences over time for each customer.

The resulting table is linked to Customer and Date through regular
relationships. The resulting model is visible in Figure 13-11.



FIGURE 13-11 The CustomerEvents snapshot table is connected to Customer and Date.

Building the CustomerEvents table is a critical step. Creating this
table as a derived snapshot by using a calculated table in DAX is
relatively efficient for the New and Lost states, whereas it can be
very expensive for the Temporarily lost and Recovered states. Keep
in mind that Temporarily lost is needed in order to compute the
Recovered state. In models with hundreds of thousands of
customers or with hundreds of millions of sales you should consider
preparing this table outside of the data model, and importing it as a
simple table.

Once this model is in place, the DAX measures are simple and
efficient. Indeed, for this model there is no need to create external
and internal measures – the external measures are already simple.



The full logic that defines the status of a customer is in the table
itself. This is the reason why the resulting DAX code is much
simpler.

The only calculation that requires some attention is the # Returning
Customers measure, because it computes the number of customers
dynamically while ignoring any filter other than Date and Customer. It
then subtracts the number of new customers obtained by querying
the snapshot table:

Measure in the Sales table

Measure in the Sales table

Measure in the Sales table

Measure in the Sales table



Measure in the Sales table

The measures computing the sales amount for new and returning
customers take advantage of the physical relationship between the
CustomerEvents snapshot table and the Customer table, thus reducing
the DAX code required and providing higher efficiency:

Measure in the Sales table



Measure in the Sales table

Measure in the Sales table



Creating the derived snapshot table in
DAX
We suggest creating the CustomerEvents snapshot table outside of
the data model. Indeed, creating it in DAX is an expensive operation
that requires large amounts of memory and processing power to
refresh the data model. The DAX implementation described in this
section works well on models with up to a few thousand customers
and up to a few million sales transactions. If your model is larger
than that, you can implement a similar business logic using other
tools or languages that are more optimized for data preparation.

The complex part of the calculation is the retrieving of the dates
when a customer is temporarily lost and then possibly recovered.
These events can happen multiple times for each customer. For this
reason, for each transaction we compute two dates in two calculated
columns in the Sales table:

TemporarilyLostDate: this is the date obtained by the Date
Temporary Lost Customer measure when there are no other
transactions between the current row in Sales and the date. If
the same customer put multiple transactions through on the



same date, all of them will have the same value in the
TemporarilyLostDate column.

RecoveredDate: this is the date of the first purchase made by
that same customer after TemporarilyLostDate. This column is
blank if there are no transactions after TemporarilyLostDate.

The code of these calculated columns is the following:

Calculated column in the Sales table

 Calculated column in the Sales table



We then use these calculated columns to obtain two calculated
tables as an intermediate step to compute the CustomerEvents
snapshot table. If you want to leverage an external tool to only
compute the Temporarily Lost and Recovered events, you should
consider importing these two tables from the data source, where you
prepare their content by using dedicated tools for data preparation.
The two tables are visible in Figure 13-12 and Figure 13-13.

FIGURE 13-12 The TempLostDates table only contains the Temporarily Lost events.



FIGURE 13-13 The RecoveredDates table only contains the Recovered events.

Using these intermediate tables, the CustomerEvents calculated
table is obtained with a final UNION of the four states:

Calculated table



Splitting the calculation into smaller steps is useful for educational
purposes and to provide a guide in case you want to implement part
of the calculation outside of the data model. However, if you
implement the calculation entirely in DAX then you can skip the
intermediate TempLostDates and RecoveredDates calculated tables. In
this case you must pay attention to the CALCULATE functions in
order to avoid circular dependencies, by implementing explicit filters
obtained by iterating the result of ALLNOBLANKROW. This results in
a more verbose definition of the CustomerEvents table, proposed here
under the name CustomerEventsSingleTable:



Calculated table





Although the sample file includes a definition of
CustomerEventsSingleTable, the measures in the report do not use that
table. If you want to use this approach, you can replace the definition
of CustomerEvents with the expression in CustomerEventsSingleTable
and remove the former expression from the model – you also want
to remove the TempLostDates and RecoveredDates calculated tables
that are no longer being used.





CHAPTER 14

Related distinct count

Download sample files: https://sql.bi/dax-208

The Related distinct count pattern is useful whenever you have one
or more fact tables related to a dimension, and you need to perform
the distinct count of column values in a dimension table only
considering items related to transactions in the fact table. For
demonstration purposes we use the distinct count of the product
name in a model with two fact tables: Sales and Receipts.

Because the product name is not unique – we artificially introduced
duplicated names by removing the color description from the product
name – a simple distinct count of the product key in the Sales or
Receipts table does not work. Finally, we show how to compute the
distinct count of product names that appear in both tables and in at
least one of the two.

https://sql.bi/dax-208


Pattern description
The Product[Product Name] column is not unique in the Product table
and we need the distinct count of the product names that have
related sales transactions. The model contains two tables with
transactions related to products: Sales and Receipts. Figure 14-1
shows this data model.

FIGURE 14-1 The data model contains two fact tables: Sales and Receipts.

Based on this model we want to compute the distinct count of
product names appearing:

In Sales.



In Receipts.

In both the Sales and Receipts tables.

In at least one of the Sales and Receipts tables.

The report is visible in Figure 14-2.

FIGURE 14-2 The report shows the four measures demonstrated in the pattern.

The code for the first two measures is the following:

Measure in the Sales table

Measure in the Receipts table



Using SUMMARIZE, the # Prods from Sales and # Prods from Receipts
measures retrieve the distinct product names referenced in the
relevant table. SUMX just counts the number of those products and
it is used instead of COUNTROWS or DISTINCTCOUNT for
performance reasons – more details in the article Analyzying the
performance of DISTINCTCOUNT in DAX.

Despite being longer than a solution using DISTINCTCOUNT and
bidirectional cross-filtering, this version of the code is faster in the
most frequent case – where the number of products is significantly
smaller than the number of transactions.

NOTE  The natural syntax to compute the Result variable in the #
Prods from Sales and # Prods from Receipts measures should use
COUNTROWS. The SUMX version is only suggested for
performance reasons in the simple measures. The following
measures of this pattern use COUNTROWS because there would
be no advantage in using SUMX in more complex expressions.

The formulation using SUMMARIZE and COUNTROWS can be
easily extended to accommodate for the next formulas that produce
the intersection (# Prods from Both) or the union (# Prods from Any) of
the product names:

Measure in the Receipts table

https://www.sqlbi.com/articles/analyzing-distinctcount-performance-in-dax/


Measure in the Receipts table

We provided the examples for INTERSECT and UNION. But the
pattern can easily be adapted to perform more complex calculations.
As a further example, the # Prods in Sales and not in Receipts measure
computes the number of product names that exist in Sales but not in
Receipts by using the set function EXCEPT instead of the
INTERSECT or UNION functions used in previous measures:

Measure in the Sales table



The result of the # Prods in Sales and not in Receipts measure is
visible in Figure 14-3.

FIGURE 14-3 The # Prods in Sales and not in Receipts measure counts the products present in
Sales but not in Receipts.

The pattern can be extended to compute the distinct count of any
column in a table that can be reached through a many-to-one chain
of relationships from the fact tables. This is because SUMMARIZE is



able to group by any of those columns.







CHAPTER 15

Events in progress

Download sample files: https://sql.bi/dax-224

The Events in progress pattern has a broad field of application. It is useful
whenever dealing with events with a duration – events that have a start date
and an end date. The event is considered to be in progress between the two
dates. As an example, we use Contoso orders.

Each order has an order date and a delivery date. The date when the order
was placed is considered the start date, and the date when the order was
delivered is considered the end date.. An order is considered open when it
has been placed but has not yet been delivered. We are interested in
counting how many orders are open at a certain date, and what their value
is.

As with many of the patterns described, Events in Progress can be handled
both dynamically through measures, or statically by using a snapshot table.

Definition of events in progress

You need to compute how many orders are open at a specific time, for
Contoso. In Figure 15-1 you can see the result of the calculation at the day
level; on each day the number of open orders is the number open orders
from the previous day, plus the orders received and minus the orders
delivered that day. EOP stands for End Of Period.

Figure 15-1 The report shows orders received, delivered and open on a
daily basis.

However, this way of computing the number of open orders could be
ambiguous when we consider a period of several days, such as a month or a
year. The ambiguity is explained below. To avoid this ambiguity, it is
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important to clearly define the desired result. When looking at a single day,
the number of orders open is evident, as you can see in Figure 15-2.

Figure 15-2 On October 15, 2019 there are two orders that are open.

In Figure 15-2 only orders number 2 and 5 are open at the date considered
(October 15, 2019). Order 1 is already delivered, whereas orders 3 and 4
are yet to be received by Contoso. Therefore, the calculation is clearly
defined. Nevertheless, when you report on a larger period of time, like a
month, the calculation is harder to define. Look at Figure 15-3 where the
time duration is much larger, including the full month of October.

Figure 15-3 When looking at October, are there one, two or three open
orders?

In Figure 15-3, order 1 is completed before the beginning of October, and
order 4 is yet to be received by Contoso after the end of October. Therefore,
their status is obvious. However, order 2 is open at the beginning of the
month, but it is closed at the end. Order 3 is opened during the month and
still open at the end of the month. Order 5 is received and closed during the
month. As you see, a calculation that is straightforward on an individual
day requires a better definition at an aggregate level.

We do not want to provide an extensive description of every possible
option. In this pattern we only consider the following three definitions for
the orders in a period longer than one day – each measure is identified with
a suffix from the list:

ALL: Returns the orders that were open at any time during the period.
For Figure 15-3, we report three orders; we consider order 5 as open
because it has been open for some time during the period considered.
EOP: Considers the status of each order at the end of the period. For
Figure 15-3, this means reporting only one order (order 3), because all
the other orders are either closed or not yet opened at the end of the
period.



AVG: Computes the daily average of the orders open in the period.
This requires computing the number of open orders day by day, and
then averaging it over longer periods.

There might be different definitions of open orders, which usually are slight
variations of the three scenarios described above.

Open orders

If the Orders table stores data at the correct granularity – storing one row
for each order along with order date and delivery date – then the model
looks like the one in Figure 15-4.

Figure 15-4 The data model with an Orders table.

The DAX code computing the open orders for this model is rather simple:

Measure in the Orders table

It is worth noting that REMOVEFILTERS is required, in order to remove
any report filters that may be affecting the Date table.

Based on this measure, you can compute the two variations (end of period
and average) using the following formulas:

Measure in the Orders table

Measure in the Orders table

You can see the result of these formulas in Figure 15-5.

Figure 15-5 The three measures report different results for numbers of open
orders.



The Orders table might have more than one row for each order. If the
Orders table has one row for each line in the order instead of one row for
each order, then you should use DISTINCTCOUNT over a column
containing a unique identifier for each order – instead of using
COUNTROWS over the Orders table. This is not the case in our sample
model, but in that scenario the # Open Orders ALL formula would differ by
just one line:

Measure in the Orders table

If you want to compute the dollar value of the open orders, you use the
Sales Amount measure instead of the COUNTROWS or
DISTINCTCOUNT functions. For example, this is the definition of the
Open Amount ALL measure:

Measure in the Orders table

The other two measures just reference the underlying Open Amount ALL
measure instead of # Open Orders ALL:

Measure in the Orders table

Measure in the Orders table

The Figure 15-6 shows the results of the measures defined above.

Figure 15-6 The three measures display the value of all open orders
compared side by side.

The formulas described in this section work well on small datasets, but they
require a big effort from the Formula Engine; this results in reduced
performance starting from medium-sized databases and above - think
hundreds of thousands of orders. If you need better performance, using a
snapshot table is a very good option.



Open orders with snapshot

Building a snapshot simplifies the calculation and speeds up the
performance. A daily snapshot contains one row per day and order that is
open on that day. Therefore, a single order that has been open for 10 days
requires 10 rows in the snapshot.

In Figure 15-7 you can see an excerpt from the snapshot table.

Figure 15-7 Each order has as many rows as days it has been open.

For large data models where the snapshot requires tens of millions of rows,
it is suggested to use specific ETLs or queries in SQL to get the snapshot
result. For smaller data models, the snapshot table can be created by using
either Power Query or DAX. For example, the snapshot of our sample
model can be created using the following definition of the Open Orders
calculated table:

Calculated table

In Figure 15-8 you can see that the Open Orders snapshot has a set of
regular relationships with the other tables in the model.

Figure 15-8 The snapshot is related to other tables, so to perform slicing
and dicing.

Using the snapshot, the formulas that compute the number of open orders
are faster and simpler to write:

Measure in the Orders table

Measure (hidden) in the Orders table

Measure in the Orders table



Measure in the Orders table

Only the # Open Orders ALL measure requires the DISTINCTCOUNT
function. The other two measures, # Open Orders EOP and # Open Orders
AVG count the number of open orders one day at a time, which can be done
using a faster COUNTROWS over the snapshot table.

The Open Amount ALL measure requires you to apply the list of open
orders as a filter to the Orders table. This is achieved using TREATAS:

Measure in the Orders table

The Open Amount EOP and Open Amount AVG measures just reference
the underlying Open Amount ALL measure instead of # Open Orders ALL:

Measure in the Orders table

Measure in the Orders table

The size of the snapshot depends on the number of orders and on the
average duration of an order. If an order typically stays open for a few days,
then it is fine to use a daily granularity. If an order is usually active for a
much longer period of time (think years) then you should consider moving
the snapshot granularity to the month level – one row for each order open
in each month.

A possible optimization requires an inactive relationship between Orders
and Open Orders. This is only useful when the Orders table has one row
per order – the Orders[Order Number] column is thus unique and the
relationship has a one-to-many cardinality. The inactive relationship should
be like the one highlighted in Figure 15-9. Do not use this technique with a
many-to-many cardinality because the pure DAX approach based on
TREATAS would be similar in performance and simpler to manage.



Figure 15-9 The inactive one-to-many relationship allows for performance
optimization.

Then you should replace the previous Open Amount ALL measure with the
code of the Open Amount ALL optimized measure defined as follows:

Measure in the Orders table

Leveraging the relationship to transfer the filter reduces the workload of the
Formula Engine and improves the performance of all the measures based
on Open Amount ALL. You should just consider the side effects of
USERELATIONSHIP in different models, applying the required
CROSSFILTER to remove possible ambiguities. Usually it should be
enough to disable the relationship between Orders and Date like in this
example, but carefully check the accuracy of the results by comparing the
optimized measure with the one based on TREATAS.



CHAPTER 16

Ranking

Download sample files: https://sql.bi/dax-229

The ability to rank things is a very common requirement. Finding the
best customers, computing the ranking position of products, or
detecting the countries with the best sales volumes are among the
questions most frequently asked by management.

Ranking can be either static or dynamic. Static ranking assigns to
each product a ranking position that is not affected by filters,
whereas in dynamic ranking the position is computed every time the
user interacts with the report. For example, in dynamic ranking the
year selected in the report defines a new calculation of the ranking
value.

All the basic ranking calculations are based on the RANKX
function, whereas more advanced techniques – like filtering the top
10 products – require the TOPN function and advanced table
calculations.

https://sql.bi/dax-229


Static ranking
You assign a static ranking to a product by using a calculated
column. The calculated column is computed during data refresh.
Therefore, the value of the static ranking does not depend on the
report filters. For example, in Figure 16-1 the first product is ranked 1
because the LCD HDTV M140 is the top seller among products of
any category, whereas the second product (SV 16xDVD M360
Black) shows a product rank equal to 4 instead of 2. The reason is
that there are another two products ranked 2 and 3 that are not
included in the TV and Video category, which is selected in the
Category slicer. Nevertheless, the ranking being static does not
consider report filters. It shows the overall ranking of the products
visible in the report.

FIGURE 16-1 The report is showing the overall ranking, even though only a selection of
products is visible.

Removing the filter on Category, the overall ranking shows all the
products as one would expect. This is shown in the following figure.

FIGURE 16-2 With no filter on Category, the ranking simply adds one to each row.



To compute the static ranking of a product based on the Sales
Amount measure we need a calculated column in the Product table:

Calculated column in the Product table

In this code, the ALL function is not needed. However, it clarifies
the intention of ranking against all the products which is why we
added it; it makes the code easier to read over time.

A similar formula can be used to obtain the ranking over a subset of
products. For example, the following calculated column computes
the ranking of a product inside its category:

Calculated column in the Product table

As shown in the figure below, the fourth row (SV 16xDVD M360
Black) has a Product Rank of 4 and a Rank in Category of 2, because
the latter is the ranking in the TV and Video category.



FIGURE 16-3 Rank in Category shows the ranking local to the category of the product.

Dynamic ranking
The Dynamic ranking pattern produces a ranking that changes
depending on the report filters. Consequently, it is based on
measures instead of calculated columns.

FIGURE 16-4 Dynamic ranking ranks products among the ones visible, using the report
filters.

The code of the Product Rank measure is the following:

Measure in the Product table



Obtaining different rankings requires modifying the table iterated by
RANKX. For example, the following figure shows a Rank in Category
measure that returns the ranking of a product between the products
of the same category, still considering any other filter existing in the
report, if any.



FIGURE 16-5 Rank in Category, as a measure, shows the ranking inside the current
category.

The definition of the Rank in Category measure is the following:

Measure in the Product table



Showing the top 3 products by
category

Ranking is useful to obtain reports that filter products based on their
local ranking in a given group. For example, the report below shows
how to obtain the top three products for each category. There are
two possible solutions to this scenario, depending on whether the
product name is part of the report or not.



If the report contains the product name, then we can use the Rank
in Category measure of the dynamic pattern and rely on Power BI
visual filters.

FIGURE 16-6 This report shows the top three products by category, by filtering the Rank in
Category measure in the visual.

Although this technique is not the most powerful, we show it
because it is a very efficient way of filtering the top three products.
Besides, it also solves the most common requirement which is to
actually show by name the products included in the top three.

Nevertheless, if the product name is not part of the visual, then this
technique cannot be used. The reason is that the granularity of the
visual is not compatible with the measure and the previous
technique no longer works. In the figure below, we removed the
product names from the report above.



FIGURE 16-7 Sales Amount shows the total for all the products in each category ignoring the
filter on the Rank in Category measure.

The reason the visual filter is not effective is because it is only
applied to the maximum granularity of the visual. Therefore, the
visual filter does not necessarily apply to the products. In order to
enforce the filter over product names, the measure displaying Sales
Amount must enforce the computation of the ranking at the correct
granularity, determining the products to be included in the calculation
and then using those products as a filter. The report must display the
amount using the following definition of Sales Top 3 Products:

Measure in the Sales table



The following figure shows the result of Sales Top 3 Products side by
side with Sales Amount. Though the product name is not part of the
report, the formula for Sales Top 3 Products retrieves sales strictly for
the top three products of each category, ignoring all other products.
This also applies to the grand total of the report.

FIGURE 16-8 Sales Top 3 Products reports the sales of the top three products for each
category.

Performance-wise, the formula used for Sales Top 3 Products is
slightly slower than the one using the visual-level filter. Therefore, we
suggest implementing the first solution, if feasible, and reverting to
the full pattern only if strictly necessary or if the client tool does not
support visual-level filters.











CHAPTER 17

Hierarchies

Download sample files: https://sql.bi/dax-220

Hierarchies are often created in data models to simplify the browsing
of the model by providing users with suggested paths of navigation
through attributes. The definition of the hierarchies follows the
requirements of the model. For example, the Date table usually
contains a hierarchy with levels like year, quarter, month, and day.
Similarly, the Product table usually includes a common hierarchy like
Category, Subcategory and Product.

Hierarchies make it possible to insert multiple columns at once in a
report, but hierarchies are also useful to drive calculations. For
example, a measure can show sales as a percentage over the
parent of the current level of the hierarchy. Any other calculation can
use the same approach by just customizing the calculation
associated to each level of the hierarchy.
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Detecting the current level of a
hierarchy

Any calculation involving hierarchies requires the DAX code to
detect the current level of the hierarchy. Therefore, it is important to
understand how to detect the level of a hierarchy where a measure
is being evaluated. Figure 17-1 shows the Product Level measure
whose only goal is to detect the hierarchy level being browsed. The
Product Level measure is usually hidden in the model because it is
only used in other measures and implements a calculation related to
the hierarchy level.

FIGURE 17-1 The report shows the level being browsed.

The Product Level measure is defined as follows:

Measure (hidden) in the Product table



By using ISINSCOPE, the three variables IsProductInScope,
IsSubcatInScope, and IsCatInScope check whether each level of the
hierarchy is currently being grouped by. In that case, the
corresponding column has a single value visible in the filter context.

The SWITCH statement detects the level by looking for the first
level visible starting from the more granular one. The order of the
conditions in SWITCH is relevant. Indeed, when the product is in
scope, both category and subcategory are in scope too. Therefore,
the measure must check the most restrictive filter first. The
evaluation of the active level must always start from the lowest level
of the hierarchy, and move up one step at a time.

The Product Level measure is of no use by itself. The technique
used in the measure is frequently used to implement a calculation
depending on the current level of the hierarchy. We use this measure
as a convenient way to detect the hierarchy level in the measures
described further in this pattern.

NOTE  When ISINSCOPE is not available, ISFILTERED can be
used as an alternative technique – this is the case in Excel up to
version 2019. However, by using ISFILTERED, the DAX



expression operating over hierarchies must assume that the
levels beyond the top-level of the hierarchy displayed in a
visualization are not filtered outside of the visualization itself – that
is, they should not be used in slicers, filters, or selected in other
visuals. In order to prevent the user from doing that, if
ISINSCOPE is not available it is a best practice to create a
hierarchy using only hidden columns – this means duplicating the
columns used in levels of a hierarchy so that they are also
available as separate filters and slicers without affecting the DAX
calculations over the hierarchy itself.

Percentage of parent node
A common hierarchical calculation shows a measure as a
percentage over the parent node, as shown in Figure 17-2.



FIGURE 17-2 The percentage is computed against the parent node in the hierarchy.

The % Parent measure detects the level of the hierarchy for the cell
being evaluated and uses the value of the parent at the denominator
of the ratio:

Measure in the Sales table











CHAPTER 18

Parent-child hierarchies

Download sample files: https://sql.bi/dax-221

Parent-child hierarchies are often used to represent charts of accounts,
stores, salespersons and such. Parent-child hierarchies have a peculiar way
of storing the hierarchy in the sense that they have a variable depth. In this
pattern we show how to use parent-child hierarchies to show budget, actual
and forecast values in a report using both a chart of accounts and a
geographic hierarchy.

Introduction

In the Parent-child pattern the hierarchy is not defined by the presence of
columns in the table of the original data source. The hierarchy is based on a
structure where each node of the hierarchy is related to the key of its parent
node. For example, Figure 18-1 shows the first few rows of a parent-child
hierarchy that defines a geographic structure for sales.

Figure 18-1 The Entity table stores the key of the parent for each entity.

Based on this data structure, we need to display a hierarchy showing
Contoso United States under Contoso North America, as shown in Figure
18-2.

Figure 18-2 The parent-child hierarchy derives from the parent keys.

The Parent-child pattern implements some sort of self-join of the table
containing the entities, which is not supported in Tabular. Because of their
nature, parent-child hierarchies may also have a variable depth: the number
of levels traversing the hierarchy top to bottom can be different depending
on the navigated path. For these reasons, a parent-child hierarchy should be
implemented following the technique described in this pattern.
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Parent-child hierarchies are often used with charts of accounts. In this case,
the nodes also define the sign to use to aggregate a value to its parent. The
chart of accounts in Figure 18-3 shows expenses that are subtracted from
the total – despite the numbers displayed being all positive – whereas
incomes are added.

Figure 18-3 A parent-child hierarchy used with charts of accounts may
define the sign to use to aggregate values.

The DAX expressions aggregating data over a parent-child hierarchy must
consider the sign used to aggregate data at lower level of a hierarchy node.

Basic Parent-child pattern

Neither hierarchies of variable depth nor self-joins are directly supported in
a Tabular model. The first step in handling parent-child hierarchies is to
flatten the hierarchical structure to a regular hierarchy made up of one
column for each possible level of the hierarchy. We must move from the
data structure of Figure 18-4 to that of Figure 18-5. In Figure 18-4 we only
have the three columns required to define a parent-child hierarchy.

Figure 18-4 The parent-child hierarchy shows a row for each node of the
hierarchy and a single column with the name, regardless of the number of
levels in the hierarchy.

The full expansion of the parent-child hierarchy in this example requires
four levels. Figure 18-5 shows that there is one column for each level of the
hierarchy, named Level1 to Level4. The number of columns required
depends on the data, so it is possible to add additional levels to
accommodate for future changes in the data.

Figure 18-5 Flattened hierarchy where each level of the original parent-
child hierarchy is stored in a separate column.

The first step is to create a technical column called EntityPath by using the
PATH function:



Calculated column in the Entity table

The EntityPath column contains the full path to reach the node
corresponding to the row of the table, as shown in Figure 18-6. This
technical column is useful to define the Level columns.

Figure 18-6 The EntityPath technical column contains the traversal path to
reach the node from the root level.

The code for all the Level columns is similar, and only differs in the value
assigned to the LevelNumber variable. This is the code for the Level1
column:

Calculated column in the Entity table

The other columns have a different name and a different value assigned to
LevelNumber, corresponding to the relative position of their level in the
hierarchy. Once all the Level columns are defined, we hide them and create
a regular hierarchy in the table that includes all of them – all the Level
columns. Only exposing these columns through a hierarchy is important in
order to make sure they are used in properly by the user navigating a report.

If used straight in a report, the hierarchy still does not provide an optimal
result. Indeed, all the levels are always shown, even though they might
contain no value. Figure 18-7 shows a blank row under Contoso Asia
Online Store, even though the Level4 column for that node is blank - thus
meaning that the node can be expanded only three levels, not four.

Figure 18-7 Rows with blank names should be hidden, but this does not
happen by default.

To hide the unwanted rows, for each row we must check whether the
current level is available by the visited node. This can be accomplished by
checking the depth of each node. We need a calculated column in the
hierarchy table containing the depth of the node defined by each row:



Calculated column in the Entity table

We need two measures: EntityRowDepth returns the maximum depth of the
current node, whereas EntityBrowseDepth returns the current depth of the
matrix by leveraging the ISINSCOPE function:

Measure in the Entity table

Measure in the Entity table

Finally, we use these two measures to blank out the result if the
EntityRowDepth is greater than the browsing depth:

Measure in the StrategyPlan table

Measure in the StrategyPlan table

The report obtained by using the Total Base measure no longer contains
rows with an empty description, as shown in Figure 18-8.

Figure 18-8 The rows with a blank name have disappeared because Total
Base also returns blank in those cases.

The same pattern must be applied to any measure that could be reported by
using the parent-child hierarchy.

Chart of accounts hierarchy

The Chart of accounts pattern is a variation of the basic Parent-child
hierarchy pattern, where the hierarchy is also used to drive the calculations.
Each row in the hierarchy is tagged as either Income, Expense or Taxation.
Incomes need to be summed, whereas expenses and taxation must be



subtracted from the total. The Figure 18-9 shows the content of the table
containing the hierarchy items.

Figure 18-9 Each row in the hierarchy defines an AccountType that drives
the calculations.

The implementation is similar to the Parent-child pattern, grouping the
calculation by AccountType and applying the proper sign to the calculation
depending on the value of AccountType:

Measure in the StrategyPlan table

The Total measure can use both parent-child hierarchies: the hierarchy
defined in the Entity table – shown in the previous example – and the
hierarchy defined in the Account table, which is the subject of this section.

The formula in Total returns the right result for each node of the hierarchy.
However, in these types of reports it is commonly requested that the
numbers be shown as positive despite being expenses. The requirement can
be fulfilled by changing the sign of the result at the report level. The
following Total No Signs measure implements the calculation this way: It
first determines the sign to use for the report, and then it changes the sign
of the result in order to show expenses as positive numbers, even though
they are internally managed as negative numbers:

Measure in the StrategyPlan table

The report obtained using Total No Signs is visible in Figure 18-10.

Figure 18-10 The result of the parent-child hierarchy using the Total No
Signs measure.

The pattern shown above works fine if the chart of accounts contains the
AccountType column, which defines each item as being either an income or
an expense. Sometimes the chart of accounts has a different way of



defining the sign to use. For example, there could be a column defining the
sign to use when aggregating an account to its parent. This is the case of the
Operator column shown in Figure 18-11.

Figure 18-11 The operator column indicates the sign to use to aggregate
one account to its parent.

In this case, the code to author is more complex. We need one column for
each level of the hierarchy, stating how that account needs to be shown
when aggregated at any given level of the hierarchy. A single account can
be aggregated at one level with a plus, but at a different level with a minus.

These columns need to be built from the bottom of the hierarchy. In this
example we need seven columns because there are seven levels. The
column indicates the sign to use when aggregating that specific item of the
hierarchy at the desired level. Figure 18-12 shows the result of the seven
columns in this example.

Figure 18-12 The columns from S L1 to S L7 show the sign required when
aggregating the account at the correspondent hierarchical level.

For instance, examine the rows with AccountKey 4 and 5: account 4 (Sale
Revenue) must be summed when aggregated at levels 1, 2, 3 and 4,
whereas it is not visible at other levels. Account 5 (Cost of Goods Sold)
must be summed when aggregated at level 4, but it must be subtracted
when aggregated at levels 1, 2, and 3.

The DAX formula computing the sign at each level starts from the most
granular level – level 7 in our example. At this most granular level, the sign
to use is just the operator converted into +1 or -1, for convenience in
further calculations:

Calculated column in the Account table

All the other columns (from level 1 to level 6) follow a similar pattern,
though for each level the DAX expression must consider the sign at the



more granular, adjacent level (stored in the PrevSign variable) and invert
the result when that level shows a “-“ sign, as shown in the column for
level 6:

Calculated column in the Account table

Once the level columns are ready, the Signed Total measure computing the
total with custom signs is the following:

Measure in the StrategyPlan table

We can compare the result of this last Signed Total measure with that of the
previous Total measure in Figure 18-13.

Figure 18-13 The two formulas return a different sign for the same node in
the hierarchy.

The amount for “Internet” is negative in Total, because it is an expense.
However, in Signed Total the same row holds a positive number and it
becomes negative only when it traverses the Expense node, which is
aggregated to the parent with a minus sign.

Security pattern for a parent-child hierarchy

A common security requirement for parent-child hierarchies is to restrict
the visibility to a node (or a set of nodes) including all of its children. In
that scenario, the PATHCONTAINS function is useful.

By applying the following expression to a security role on the Account
table, we limit the visibility to the node provided in the second argument of
PATHCONTAINS. This way, all the children of the node are made visible
to the user, because the node requested (2, corresponding to Income) is also
part of the AccountPath value of all the children nodes:



If we used the AccountKey column to limit the visibility, we would end up
limiting the visibility to only one row and the user would not see the
children nodes. By leveraging the path column, we can easily select
multiple rows by including all the nodes that can be reached when
traversing a path that includes the filtered node.

When the security role is active, the user can only see the nodes (and the
values) included in the tree starting from the Income node, as shown in
Figure 18-14.

Figure 18-14 The hierarchy is limited to the node that is visible for the
active security role.

The nodes above the Income node (Level3) no longer consider other
children nodes in the Total measure. In case this is misleading in the report,
consider removing the initial levels from the report (in this case Level1 and
Level2) or using different descriptions of the nodes in Level1 and Level2 in
order to better explain the result.

It is worth noting that the security role defined by using PATHCONTAINS
may slow down the performance if used with a hierarchy with thousands of
nodes. The expression in the role security must be evaluated for every node
of the hierarchy when the end user opens a connection, and
PATHCONTAINS can be expensive if it is applied to thousands of rows or
more.



CHAPTER 19

Like-for-like comparison

Download sample files: https://sql.bi/dax-225

The like-for-like sales comparison is an adjusted metric that
compares two time periods, restricting the comparison to products or
stores with the same characteristics. In this example, we use the
like-for-like technique to compare the sales of Contoso stores that
had sales in all the time periods considered. The stores are
continuously updated: new stores are opened, other stores are
closed or renovated. The like-for-like comparison only evaluates
those stores that were open in all the periods considered. This way,
the report does not show a store that seems to be underperforming
simply because it was closed during the period analyzed.

As is the case with many other patterns, like-for-like can be
computed statically or dynamically. The choice is both in terms of
performance and in terms of business requirements. The variations
of the “Same store sales” measure described in the following
paragraphs are examples of like-for-like sales comparisons.
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Introduction
If you analyze sales figures without considering whether stores were
open or closed within the time period you are analyzing, looking at
the following report might mislead you into thinking that there were
issues in 2009 because of the dramatic drop in sales.

FIGURE 19-1 Sales in 2009 dropped significantly.

In 2009 many stores were closed. Therefore, the numbers reflect a
substantial drop in sales due to the lower number of open stores, as
you can see in the following report that shows which stores were
open in different years. A blank cell means that the store was closed
in that particular year.



FIGURE 19-2 Not all the stores are open every year.

In the “same store sales” measure, you must compute the sales
amount just for the stores that were open during the entire time
period (2007-2009), namely three stores.

FIGURE 19-3 Only three stores were open during the entire three-year period.

The measure must compute the correct value even when sliced by
different attributes, as shown in Figure 19-4.



FIGURE 19-4 The measure totals the same numbers also when sliced by other attributes.

Same store sales with snapshot
The best method to solve the same store sales scenario is to use a

snapshot table to manage store statuses. Later in this pattern we
also demonstrate how to compute same store sales in a dynamic
way without a snapshot table. Nevertheless, the snapshot table is
the best option for both performance and manageability.

The snapshot table must contain all the stores and years, with an
additional column indicating the status.



FIGURE 19-5 The snapshot table StoreStatus indicates the status of each store in different
years.

The StoreStatus snapshot table can be created with the following
calculated table:

Calculated table



The StoreStatus snapshot table has a granularity by store and year.
Therefore, it has a regular strong relationship with the Store table and
a weak Many-Many-Relationship (MMR) with the Date table. If weak
relationships are not available in your tool - like in Power Pivot - then
you must transfer the filter from Date to Store in DAX using TREATAS
or INTERSECT.



FIGURE 19-6 The data model requires a weak MMR relationship between Date and
StoreStatus.

The Same Store Sales measure checks the stores whose status is always “Open” during the
entire selected period. If a store is “Closed” at any point, then SELECTEDVALUE returns
either blank or “Closed”, filtering out that store:

Measure in the Receipts table



The formula requires the snapshot table to contain the rows for all
the years and stores. If you store in the snapshot table only the
years when a store was open, then the code no longer works.

Same store sales without snapshot
In case you do not have the option of building a snapshot table,
same store sales can be computed in a more dynamic way using
only DAX code.

If the snapshot table is not available, then you must compute the
number of years of the report dynamically, and then filter all the
stores that have sales in all the years. In other words, if the report is
showing three years, then only the stores that have sales in all three
years should survive the filter. If a store does not have sales in any
one of the selected years, then that store will not be considered for
the calculation:



Measure in the Receipts table

From a computation perspective, this formula is much more
expensive than the one using the snapshot. Besides, the entire logic
to determine whether a store is open or closed lies inside the
formula. In our experience, such business logic is better handled
outside of DAX, possibly stored in the data source. Therefore, if you
do not have that information available in the data source we suggest
the implementation using the snapshot - even for smaller data
models.



The Same Store Sales Dynamic measure shows three stores that
were open in Canada for the entire time period (2007-2009).

FIGURE 19-7 Only three stores were open in Canada during the entire three-year period.







CHAPTER 20

Transition matrix

Download sample files: https://sql.bi/dax-227

The Transition matrix pattern analyzes changes in an attribute assigned to
an entity at regular intervals. For example, customers might receive a
ranking evaluation every month, or products might have a rating score
measured every week. Measuring the changes in rating between two points
in time might require the evaluation of how many items moved from one
rating to another within the considered interval. The transition matrix
enables the end user to make this kind of analysis by just manipulating
filters in a report and without having to write any custom query.

Introduction

Each product is assigned a monthly rating based on the comparison
between the percentage of sales in the current month and in the previous
month. The configuration is depicted in Figure 20-1.

Figure 20-1 The configuration table for ratings is based on growth
percentage.

A simple implementation of the dynamic segmentation lets you analyze
how many products fall under each rating every month, like in Figure 20-2.

Figure 20-2 Counting the number of products in each rating is possible
using the dynamic segmentation.

As you can imagine, one same product might be assigned different ratings
over time. The same matrix in Figure 20-3, focusing on a single product,
shows the situation for A. Datum SLR Camera.

Figure 20-3 The same camera is assigned different ratings over time.
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From a broader point of view, an interesting analysis is: taking all the
products that had a given rating in a starting month, how did they evolve
over time? Has their rating improved or worsened in the following months?
You can see the result in Figure 20-4.

Figure 20-4 The report shows the rating evolution of the 36 products
ranked Stable in March 2007.

The report is showing that there are 36 products rated Stable in March
2007. The rating for that same set of products changes in different months,
and a product only has a rating for months when there are sales. The
number of products with a rating might thus change over time. In April for
example, 8 out of the 36 products have a lower rating, 10 have the same
rating, and 13 have a higher rating. 5 of the original 36 products have no
rating in April 2007, because there were no sales for those 5 products. The
products considered in April are only products with a rating in March 2007,
the only change is their monthly rating and the 5 products without sales in
April are not included because they have no rating in that month. The same
reasoning applies to all the other months, always based on the 36 products
that are Stable in March.

There are multiple ways of generating the transition matrix; here, we
outline two possible solutions. The first solution is based on a snapshot
table, generating a very fast static transition matrix. The second solution is
based on pure DAX code, resulting in a slower but more flexible dynamic
transition matrix.

Both patterns share some of the data modeling requirements. Therefore, we
first explain the easier static transition matrix. Later on, we dive into more
details with the dynamic transition matrix. In the dynamic transition matrix
section, we will not repeat some of the details explained in the static
transition matrix. Therefore, if you need to implement the dynamic
transition matrix pattern, please review the static pattern first, in order to
gather the required information on how to setup your model.

Static transition matrix



The static transition matrix uses a snapshot table containing the rating
assigned to each product on a monthly basis. In the example provided, we
generated this snapshot through a DAX calculated table. In your scenario,
you might have the same information already provided in the data source.
The important thing is that the table must contain the month, the product,
and the rating assigned. In Figure 20-5 you can see an excerpt of the
Monthly Ratings snapshot table.

Figure 20-5 The snapshot contains the month, the product, and the product
ratings for every month.

The snapshot table is not enough to solve the scenario. We need two
additional tables to enable the user to select a starting month and a starting
rating. The user interface provided to the user is visible in Figure 20-6.

Figure 20-6 There needs to be four independent columns in the model to let
the user create this report.

The slicer for Starting Month (1) cannot be based on the Date[Calendar
Year Month] column. Indeed, the Date table is already used in the rows of
the matrix (3). Therefore, the Date table cannot be filtered by an external
slicer in order to show – for example – September 2007 even though the
starting month is March 2007. Similarly, the slicer with the Starting Rating
(2) cannot use the same snapshot rating attribute applied to the columns of
the matrix (4). The columns of the matrix and the slicer must be fed by
different tables.

We need two calculated tables for the slicers that we call Starting Month
and Starting Rating:

Calculated table

Calculated table



These two slicer tables are not linked with any of the other tables in the
model. Only the DAX code will read their selection and use it to compute
the result of the measures.

However, the snapshot tables must be linked with the remaining part of the
model through appropriate relationships. In this example we use a weak
many-to-many relationship with Date based on the Calendar Year Month
Number column, and a simple one-to-many strong relationship with
Product based on the ProductKey column. The diagram is visible in Figure
20-7.

Figure 20-7 The snapshot table must have relationships with the other
entities in the model.

Once the model is set, the DAX code must read the current selection on the
two slicer tables and use the information to determine the list of products
that – in the selected month – are in the selected status. Once the list of
products is computed, it is used as a filter over the snapshot table in order
to restrict the calculation strictly to the relevant products:

Measure in Sales table

Because the static transition matrix is based on a calculated table, its results
are not dynamic. This means that if the user filters the customers in a
specific country, the numbers in the transition matrix will not change. The
only tables that affect the result are the ones linked through physical
relationships with the snapshot. In this example these tables are Date and
Product.

If you need a dynamic transition matrix that recomputes its result every
time based on the current selection across the entire data model, then you
need to implement the more powerful (albeit slower) dynamic transition
matrix.

Dynamic transition matrix



The dynamic transition matrix solves the same scenario as the static
transition matrix, with the noticeable difference that it does not require the
snapshot table. Instead, it computes the result every time the measure is
evaluated, resulting in a dynamic calculation.

The data model is the same as the static transition matrix, but no snapshot
table is required this time. The result is visible in Figure 20-8, where we
added a slicer filtering one continent – the same slicer would have no effect
on a static transition matrix.

Figure 20-8 The dynamic transition matrix responds to any filter in the
report.

Because the pattern requires computing the ranking of a product multiple
times, this time we created a measure to return the rating of a product in a
given month:

Measure in the Sales table

The final measure is quite intricate. It is divided into two separate steps:

1. Compute the list of the products that are in one of the selected states
and months, chosen by the user with the slicers. To perform this
operation – since the ranking of each product is unknown at the
beginning – the formula computes the ranking of each product and
then filters out the ones that are not selected.

2. Compute the status of the products computed earlier, this time in the
current filter context. This second step is very similar to the previous
one; the only important difference is in the filtering of dates and
products, as better outlined in the code comments:

Measure in Sales table

As you see, this code is not trivial at all. Changing it to make it fit your
specific needs requires a deep understanding of its inner workings.



The dynamic transition matrix, albeit very powerful, is extremely
demanding on CPU and RAM. Its speed mainly depends on the number of
products. In data models with hundreds of thousands of products, it is
unlikely to be usable. On the other hand, on smaller models it works just
fine, though the static transition matrix displays much better performance.



CHAPTER 21

Survey

Download sample files: https://sql.bi/dax-216

The Survey pattern uses a data model to analyze correlations
between different events related to the same entity, such as
customer answers to survey questions. For example, in healthcare
organizations the Survey pattern can be used to analyze data about
patient status, diagnoses, and medicine prescribed.

Pattern description
You have a model that stores answers to questions. Therefore,
consider a Questions table containing questions and possible
answers shown in Figure 21-1.
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FIGURE 21-1 Every question has several possible answers.

The answers are stored in an Answers table containing in each row
the survey target (the Customer in this case), one question and one
answer. There are multiple rows in case the same customer provides
multiple answers to the same question. The real model would store
information with integer keys; In Figure 21-2 we are using strings to
clarify the concept.



FIGURE 21-2 Every row in the Answers table contains the answer of a customer to one
specific question.

By using a DAX formula, we can answer a request like, “How many
customers enjoy cartoons, broken down by job and gender?”
Consider Figure 21-3 as an example. In this table, totals are not
strict totals. This is explained later.



FIGURE 21-3 Every cell shows the number of customers who like one kind of movie and
provided different answers to the job and gender questions.

The report includes two slicers to select the questions to intersect
in the report. The columns in the matrix have the answers to the
question selected in the Question 1 slicer, whereas the rows of the
matrix provide the details of questions and answers corresponding to
the selection made in the Question 2 slicer. The highlighted cell
shows that 9 customers who answered Cartoons to the Movie
Preferences question also answered Female to the Gender
question.

In order to implement this pattern, you need to load the Questions
table twice. This way you can use two slicers for the questions to
analyze. Moreover, the relationship between the two copies of the
questions must be inactive. Because we use the tables as filters, we
named them Filter1 and Filter2. You can see the resulting diagram in
Figure 21-4.



FIGURE 21-4 The Survey data model includes inactive relationships between the Filter and
Answers tables.

To compute the number of customers who answered Q1 (the
question filtered by Filter1) and Q2 (the question filtered by Filter2)
you can use the following formula:

Measure in the Customers table

The formula activates the correct relationship when computing
CustomersQ1 and CustomersQ2. It then uses the two variables as
filters for the Answers table, which filters the customers through the



CROSSFILTER modifier.

You can compute any calculation using the previous formula -
provided that the CROSSFILTER modifier makes the Answers table
filter the table you are basing your code on. Therefore, you can
replace COUNTROWS ( Customer ) with any expression involving the
Customers table. For example, the RevenueQ1andQ2 measure
provides the total revenue made off of the customers included in the
selection; The only difference with the CustomersQ1andQ2 measure is
the Revenue Amount measure reference that replaces the previous
COUNTROWS ( Customer ) expression:

Measure in the Customers table

The result of the RevenueQ1andQ2 measure is visible in Figure 21-5.



FIGURE 21-5 Every cell shows the revenue made off of customers who like one kind of
movie and provided different answers to the job and gender questions.

If you only count the number of customers, then the previous code
can be simplified and sped up by using the following variation:

Measure in the Customers table

It is important to understand the condition computed in each cell.
We use Figure 21-6 to explain this further, where we labeled a few
cells from A to E.



FIGURE 21-6 Each cell computes a different number, the explanation is in the text below.

Here is what is computed in each cell:

A Female AND prefers Cartoons

B ( Female OR Male ) AND prefers Cartoons

C ( Female OR Male OR Consultant OR IT Pro OR Teacher ) AND prefers Cartoons

D ( Female OR Male ) AND prefers ( Cartoons OR Comedy OR Horror )

E
( Female OR Male OR Consultant OR IT Pro OR Teacher ) AND prefers ( Cartoons OR
Comedy OR Horror )

The formula uses an AND condition for the intersection between
questions selected in Question 1 and Question 2, whereas it uses an
OR condition for the answers provided to one same question.
Remember that the OR condition means “any combination” (do not
confuse it with an “exclusive or”) and the OR condition also implies a
non-additive behavior of the measure.







CHAPTER 22

Basket analysis

Download sample files: https://sql.bi/dax-217

The Basket analysis pattern builds on a specific application of the
Survey pattern. The goal of Basket analysis is to analyze
relationships between events. A typical example is to analyze which
products are frequently purchased together. This means they are in
the same “basket”, hence the name of this pattern.

Two products are related when they are present in the same
basket. In other words, the event granularity is the purchase of a
product. The basket can be the most intuitive, like a sales order; but
the basket can also be a customer; In that case, products are related
if they are purchased by the same customer, albeit across different
orders.

Because the pattern is about checking when there is a relationship
between two products, the data model contains two copies of the
same table of products. The two copies are named Product and And
Product. The user chooses a set of products from the Product table;
the measures show how likely it is that products in the And Product
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table are associated to the original selection.

We included in this pattern additional association rules metrics:
support, confidence, and lift. These measures make it easier to
understand the results and they extract richer insights from the
pattern.

Defining association rules metrics
The pattern contains several measures, which we describe in detail
in this section. In order to provide the definitions, we examine the
orders containing at least a product of the Cameras and camcorders
category and one product of the Computers category, as shown in
Figure 22-1.

FIGURE 22-1 Analysis of the orders with “Cameras and camcorders” products that also
contain “Computers” products.

The report in Figure 22-1 uses two slicers: The Category slicer
shows a selection of the Product[Category] column, whereas the And
Category slicer shows a selection of the ‘And Product’[And Category]
column. The # Orders measure shows you how many orders contain



at least one product of the “Cameras and camcorders” category,
whereas the # Orders And measure shows how many orders contain
at least one product of both the “Cameras and camcorders” and
“Computers” categories. We describe the other measures later. First,
we need to make an important note: by inverting the selection
between Category and And Category, the results are different by
design. Most measures provide the same result (# Orders Both, %
Orders Support, Orders Lift), whereas confidence (% Orders Confidence)
depends on the order of the selection. In Figure 22-2 you can see
the report from Figure 22-1, with the difference that the selections
were inverted between the Category and And Category slicers.

FIGURE 22-2 Analysis of the orders with “Computers” products that also contain “Cameras
and camcorders” products.

Next, you find the definition of all the measures used in the pattern.
There are two versions of all the measures: one considering the
order as a basket, the other using the customer as a basket. For
example, the description of # And applies to both # Orders And and #
Customers And.



#
# Orders and # Customers return the number of unique baskets in the
current filter context. Figure 22-1 shows 2,361 orders containing one
product from the “Cameras and camcorders” category, whereas
Figure 22-2 shows 2,933 orders containing at least one product from
the “Computers” category.

# And
# Orders And and # Customers And return the number of unique
baskets containing products of the And Product selection in the
current filter context. These measures ignore the Product selection.
Figure 22-1 shows 2,933 orders containing at least one product from
the “Computers” category.

# Total
# Orders Total and # Customers Total return the total number of
baskets and ignore any filter over Product and And Product. Both
Figure 22-1 and Figure 22-2 report 21,601 orders. Be mindful that
the filter on And Product is ignored by default because the
relationship is not active; the only filter being explicitly ignored in the
measure is the filter on Product. If there were a filter over Date, the
measure would report only the baskets in the selected time period,
and still ignore the filter over Product.

# Both
# Orders Both and # Customer Both return the number of unique
baskets containing products from both the categories selected with
the slicers. Figure 22-1 shows that 400 orders contain products from
both categories: “Cameras and camcorders” and “Computers”.



% Support
% Orders Support and % Customers Support return the support of the
association rule. Support is the ratio between # Both and # Total.
Figure 22-1 shows that 1.85% of the orders contain products from
both categories: “Cameras and camcorders” and “Computers”.

% Confidence
% Orders Confidence and % Customers Confidence return the
confidence of the association rule. Confidence is the ratio between #
Both and #. Figure 22-1 shows that out of all the orders containing
“Cameras and camcorders”, 16.94% also contain “Computers”
products.

Lift
Orders Lift and Customers Lift return the ratio of confidence to the
probability of the selection in And Product.

A lift greater than 1 indicates an association rule which is good
enough to predict events. The greater the lift, the stronger the
association. Figure 22-1 reports that the association rule between
“Cameras and camcorders” and “Computers” is 1.25, obtained by
dividing the % Confidence (16.94%) by the probability of # Orders
And over # Orders Total (2933/21601 = 13.58%).

Sample reports
This section describes several reports generated on our sample



model. These reports are useful to better understand the capabilities
of the pattern.

The report in Figure 22-3 shows the products that are more likely to
be present in orders containing “Contoso Optical USB Mouse M45
White”.

FIGURE 22-3 Basket analysis between products grouped by category.

“SV Keyboard E90 White” is present in 99.45% (confidence) of the
orders that contain the selected mouse. The support of 3.33%
indicates that the orders with this combination of products represent
3.33% of the total number of orders (21,601 as shown in Figure 22-
1). The high lift value (29.67) is also a good indicator of the quality of
the association rule between these two products.

The report in Figure 22-4 shows the pairs of products that are most
likely to be in the same order, sorted by confidence.



FIGURE 22-4 Basket analysis between products.

The dataset used in this example returns somewhat similar
confidence values when the order of the two products is reversed.
However, this is not common. Focus on the highlighted lines: when
“Contoso USB Cable M250 White” is in the first column the
confidence of an association with “SV 40GB USB2.0 Portable Hard
Disk E400 Silver” is slightly smaller than the other way around. In
real datasets, these differences are usually bigger. Even though
support and lift are identical, the order matters for confidence.

The same pattern can use the customer as a basket instead of the
order. By using the customer, there are many more products in each
basket. With more data, it is possible to perform an analysis by
category of product instead of by individual product. For example,
the report in Figure 22-5 shows what the associations are between
categories in the customers’ purchase history.



FIGURE 22-5 Basket analysis between categories.

Customers buying “Cell phones” are likely to buy “Computers” too
(confidence is 48.19%), whereas only 12.74% of customers buying
“Computers” also buy “Cell phones”.

Basic pattern example
The model requires a copy of the Product table, needed to select the
And Product in a report. The And Product table can be created as a
calculated table using the following definition:

Calculated table

There is an inactive relationship between the And Product table and
Sales, connecting the Sales[ProductKey] column used in the
relationship between Product and Sales. The relationship must be



inactive because it is only used in the measures of this pattern and
should not affect other measures in the model. Figure 22-6 shows
the relationships between Product, And Product, and Sales.

FIGURE 22-6 Relationships between Product, And Product, and Sales.

We use two baskets: orders and customers. An order is identified
by Sales[Order Number], whereas a customer is identified by
Sales[CustomerKey]. From now on, we show only the measures for
orders, because the measures for the customers are a basic
variation – obtained by replacing Sales[Order Number] with
Sales[CustomerKey]. The curious reader can find the customer
measures in the sample files.

The first measure counts the number of unique orders in the
current filter context:

Measure in the Sales table



Before we describe the remaining measures in the pattern, a small
digression is required. The # Orders measure is actually a
DISTINCTCOUNT over Sales[Order Number]. We used an alternative
implementation for both flexibility and performance reasons. Let us
elaborate on the rationale of this choice.

The # Orders measure could have been written using the following
formula with DISTINCTCOUNT:

In DAX this is a shorter way to perform a COUNTROWS over
DISTINCT:

You can replace DISTINCT with SUMMARIZE this way:

The last three versions of the formula return the same result in
terms of performance and query plan. Using SUMX instead of
COUNTROWS leads to the same result:

Usually, replacing COUNTROWS with SUMX produces a query
plan with lower performance. However, the specifics of Basket
analysis make this alternative much faster in this pattern. More
details about this optimization are available in this article: Analizing
the performance of DISTINCTCOUNT in DAX.

The advantage of using SUMMARIZE is that we can replace the

https://www.sqlbi.com/articles/analyzing-distinctcount-performance-in-dax/


second argument with a column that represents the basket even if it
is in another table, as long as the table is related to Sales. For
example, the measure computing the number of unique customer
cities can be written this way:

The first argument of SUMMARIZE needs to be the table
containing the transactions, like Sales. If the second argument is a
column in Customer, then you have no choice: you must use that
column. For example, for the city of the customer you specify
Customer[City]. In case you use the column that defines the
relationship, like CustomerKey for Customer, then you can choose to
use either Sales[CustomerKey] or Customer[CustomerKey]. Whenever
possible, it is better to use the column available in Sales to avoid
traversing the relationship. This is why instead of using
Customer[CustomerKey] to identify the customer as a basket, we used
Sales[CustomerKey]:

Now that we have explained why we use SUMMARIZE instead of
DISTINCT to identify the basket attribute, we can move forward with
the other measures of the pattern.

# Orders And computes the number of orders by using the selection
made in And Product. It activates the inactive relationship between
Sales and And Product:

Measure in the Sales table



# Orders Total returns the number of orders, while ignoring any
selection in Product:

Measure in the Sales table

# Orders Both (Internal) is a hidden measure used to compute the
number of orders including at least one item of Product and one item
of And Product:

Measure in the Sales table

This hidden measure is useful to compute # Orders Both and other



calculations described later in the optimized version of the pattern. #
Orders Both adds a check to return blank in case the selection in
Product and And Product contains at least one identical product. This
is required to prevent the report from showing associations between
a product and itself:

Measure in the Sales table

% Orders Support is the ratio of # Orders Both to # Orders Total:

Measure in the Sales table

% Orders Confidence is the ratio of # Orders Both to # Orders:

Measure in the Sales table

Orders Lift is the result of the division of % Orders Confidence by the
ratio of # Orders And to # Orders Total, as per the formula we had
introduced earlier:



Measure in the Sales table

The code described in this section works. Yet, the measures might
display performance issues in case there are more than a few
thousand products. The optimized pattern provides a faster solution,
but at the same time it requires additional calculated tables and
relationships to improve the performance.

Optimized pattern example
The optimized pattern reduces the effort required at query time to
find the best combinations of products to consider. The performance
improvement is obtained by creating calculated tables that pre-
compute the existing combinations of products in the available
baskets. Because we consider orders and customers as baskets, we
created two calculated tables that are related to Product, as shown in
Figure 22-7.



FIGURE 22-7 Relationships between Product, RawProductsCustomers, RawProductsOrders,
And Product, and Sales.

The RawProductsOrders and RawProductsCustomers tables contain in
each row, a combination of two product keys alongside the number
of baskets containing both products. The rows that would combine
identical products are excluded:



Calculated table

Calculated table

The filter from Product automatically propagates to the two
RawProducts tables. Only the filter from And Product must be moved
through a DAX expression in the # Orders Both measure. Indeed, #
Orders Both is the only measure that differs from the ones in the
basic pattern:

Measure in the Sales table



# Orders Both cannot use the # Orders Both (Internal) implementation
because of the way it applies the filters. # Orders Both transfers the
filter from And Product to RawProductsOrders and then to Sales in order
to retrieve the orders that include any of the items in Any Product.
This technique is somewhat complex, but it is useful in order to



reduce the workload in the formula engine. All this results in better
performance at query time.





CHAPTER 23

Currency conversion

Download sample files: https://sql.bi/dax-219

Currency conversion is a complex scenario where both the data
model and the quality of the DAX code play an important role. There
are two kinds of currencies: the currency used to collect orders and
the currency used to produce the report. Indeed, you might collect
orders in multiple currencies, but need to report on those orders
using only one currency, so to be able to compare all the values with
the same unit of measure. Alternatively, you might collect (or store)
orders in a single currency, but need to report the values using
different currencies. Finally, you might have both orders that are
collected in different currencies and reports that need to show many
different currencies.

In this pattern, we cover three different scenarios where we
simplified the description by only using EUR and USD:

Multiple sources, single target: orders are in both EUR and
USD, but the report must convert all currencies into USD.

https://sql.bi/dax-219


Single source, multiple targets: orders are only in USD, but the
user can choose to see the report in either EUR or USD.

Multiple sources, multiple targets: orders are in both EUR and
USD, but the user can choose to see the report in either EUR
or USD.

The formulas depend on the currency conversion table available.
The requirement is often to perform the currency conversion for each
day of the year. Sometimes it is only possible to perform the
currency conversion at a different granularity, for example at the
month level. The differences in managing these different cases are
minimal, and we highlight them when showing the DAX code.

For demo purposes, we created models with both the daily and the
monthly currency conversions. Therefore, you find both formulas and
models in the same demo file, though you should only use one of the
two exchange rate granularities for a specific implementation.

We created the daily currency conversion tables by tweaking the
data available in Contoso. Therefore, these examples contain
imaginary currency conversion rates with the sole purpose of
showing a technique – and no guarantee of accuracy at all.

Multiple source currencies, single
reporting currency

In this scenario, the source data contains orders in different
currencies, and the report converts values into a single currency. For
example, orders are in EUR, USD, and other currencies; the report
must convert the order currency to USD.

The first thing to analyze is the model shown in Figure 23-1.



FIGURE 23-1 The model shows how to link Sales with the Daily Exchange Rates, through
Date and Currency.

The Sales table stores the transaction value with the local currency.
Every column that contains a monetary amount uses the local
currency, like Net Price, Unit Price, and Unit Discount. The Sales table
has a relationship with the Currency table that depends on the
currency of the transaction.

A simple measure computing the sales amount would only work if
sliced by the source currency; indeed, it is not possible to aggregate
values in different currencies without performing a currency
conversion first. For this reason, we called the measure doing this
calculation Sales (Internal), and we also hide this measure from the
user:

As shown in Figure 23-2, Sales (Internal) produces a meaningless
total, because it is summing values in different source currencies.
Instead, the two measures Sales USD (Monthly) and Sales USD (Daily)
produce a result that make sense, because they convert the Sales



(Internal) value to USD. The differences in the report between the
Sales USD (Monthly) and Sales USD (Daily) measures are due to the
fluctuation of the currency exchange rates within each month.

FIGURE 23-2 The sum of Sales (Internal) across different currencies produces a
meaningless result.

To perform an efficient currency conversion, we aggregate Sales
(Internal) at the granularity of the exchange rate for each currency,
and then we apply the conversion rate. For example, the Sales USD
(Daily) measure implements the calculation at a day granularity by
iterating with a SUMX the result of a table that has one row for each
date and currency:

Measure in the Sales table



To achieve optimal performance, it is essential to reduce the
number of iterations to retrieve the currency exchange rate.
Performing the currency exchange rate for every transaction would
be time-consuming because all the transactions made on the same
day with the same currency have the same currency exchange rate.
SUMMARIZE over Sales significantly reduces the granularity of the
entire formula. In case the currency exchange rates are available at
the month level, the formula must reduce the granularity to the
month level, like Sales USD (Monthly):

Measure in the Sales table



The measures used in this example do not check whether a
currency exchange rate is available or not because the operation
being performed is a division – which results in a division by zero
error in case a rate is missing. An alternative approach is to use the
conditional statement in the following examples, which controls the
error message displayed if a currency exchange rate is missing. You
should use either one of the two techniques that raise an error in
case a rate is missing, otherwise the report would show inaccurate
numbers without any warning to the user.

Single source currency, multiple
reporting currencies

In this scenario, the source data contains orders in a single currency
(USD in our example), and the user changes the currency to use in



the report through a slicer. The report converts the original amount
according to the date of the transaction and to the currency selected
by the user.

The model shown in Figure 23-3 does not show any direct
relationship between the Sales and Currency tables. Indeed, all the
sales transactions are in USD, and the Currency table allows the user
to select the desired report currency.

FIGURE 23-3 There is no direct relationship between Sales and Currency.

The user can either choose the desired currency with a slicer, or
use the Currency[Currency] column in a matrix as shown in Figure
23-4, which performs the conversion using the monthly currency
exchange rates.



FIGURE 23-4 The report shows the same sales amount by product brand in different
currencies.

The structure of the formula to obtain the desired result is similar to
the previous example, even though its implementation is slightly
different because of the data model being different. The Sales (Daily)
measure applies a different currency conversion rate for every day:

Measure in the Sales table



The initial test with HASONEVALUE ensures that only one currency
is visible in the current filter context. The AggregatedSalesInUSD
variable stores a table with the sales amount in USD and the
corresponding currency exchange rate at the day granularity. The
@Rate column retrieves the proper exchange rate thanks to the
existing filter over Currency[Currency] and the context transition from
Date[Date] aggregated by SUMMARIZE. The Result variable gets the
final result by summing the result of the product of @Rate by
@USDSalesAmount, or raises an error in case @Rate is not available.
This breaks the report with an error message that describes the data
quality issue (Missing conversion rate).

If the currency exchange rate is only available at the month level,
Sales (Monthly) only differs from Sales (Daily) by the argument of
SUMMARIZE:



Measure in the Sales table

Multiple source currencies, multiple
reporting currencies

This scenario is a combination of the previous two. The source data
contains orders in different currencies, and the user changes the
currency to use in the report through a slicer. The report converts the
original amount according to the date of the transaction, the original
currency, and the reporting currency selected by the user.

There are two currency tables in the data model: Source Currency
and Target Currency. The Source Currency table has a relationship with
Sales and represents the currency of the transaction. The Target
Currency table allows the user to select the desired currency for the
report. The model is visible in Figure 23-5.



FIGURE 23-5 In this model there are two currencies: the source linked to Sales, and the
target for the user to select.

This model enables the conversion of any source currency into any
target currency. Figure 23-6 shows orders collected in different
currencies from several countries using the monthly currency
exchange rates. The report converts the original amount into the
currency displayed in the column of the matrix.



FIGURE 23-6 The model converts any source currency into any target currency.

The formula of the measure – like the model – is a mix of the two
previous ones. The HASONEVALUE function checks that only one
target currency is selected. The AggregatedSalesInCurrency variable
contains a table with the sales amount aggregated at the available
granularity of the currency exchange rate, also including the source
currency. The @Rate column fetches the proper exchange rate
thanks to the existing filter over ‘Target Currency’[Currency], and
thanks to the context transition from Date[Date] and ‘Source
Currency’[Currency] aggregated by SUMMARIZE. The Result variable
obtains the final result by summing the result of the product of @Rate
by @SalesAmount, or raising an error in case @Rate is not available:

Measure in the Sales table



As with the previous examples, it is important to use the granularity
of the currency exchange table. If the currency exchange rate is only
available at the month level, the Sales (Monthly) measure only differs
from Sales (Daily) by the argument of SUMMARIZE:

Measure in the Sales table









CHAPTER 24

Budget

Download sample files: https://sql.bi/dax-214

This pattern includes several coding techniques you may find useful
for budgeting scenarios. The techniques do not apply only to
budgeting. We use the budget as an example to show how to
reallocate a measure at a different granularity, and how to combine
measures coming from tables with different granularities into the
same chart.

Besides, each company has its own approach for creating and
managing a budget. This pattern is just an example of what can be
done. You must adapt the measures and the techniques shown in
this pattern to your specific business.

Introduction
The initial table used for the budget contains forecasts of sales at a
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certain granularity. In our example, this table contains forecasts of
sales by store country, product category, and year. There are three
forecasts named Low, Medium, and High. Figure 24-1 shows the full
dataset.

FIGURE 24-1 The forecast dataset contains data for store country, product category, year,
and scenario.

Based on this dataset, we work with the following requirements:

Allocating the forecast at a different granularity. For example,
computing the monthly forecast based on the sales in the
previous year.

Combining actuals and forecasts in the same report, using the
actual values for the past months and the forecasts for the
future months of the current year.

Correcting the forecast of future months based on how far
they are from the actuals in past months of the current year.



Additionally, we want to keep in mind new products that might be
introduced throughout the years, as well as discontinued products
for which the forecast should not be computed. For this purpose, we
use a table called Override that states when a product was
introduced, along with the sales forecast for the first year. The same
Override table also includes the dismission date of the discontinued
products that are not used in order to allocate the forecast. The
allocation of the new products by store country must be based on
past sales of other products.

The data model
Before diving into the details of the calculations, it is important to
make some considerations about the data model.

The scenario we are analyzing is a top-down forecasting scenario.
Therefore, the source data contains a forecast of sales for different
scenarios at a low granularity. Low granularity means that the
information provided is at a very high level: year, store country, and
product category. There are no details about individual products,
months or stores. Consequently, the Forecast table is linked with the
relevant tables using weak Many-Many-Relationships (MMR) and it
has a Single-Many-Relationship (SMR) only with the Scenario table,
as depicted in the diagram in Figure 24-2.



FIGURE 24-2 The relationships between Forecast and other dimensions (other than
Scenario) are weak MMR relationships.

The following relationships start off of the Forecast table:

MMR with Store based on the CountryRegion column.

MMR with Product based on the Category column.

MMR with Date based on the Year column.

SMR with Scenario based on the Scenario column.

All the MMRs are weak relationships; they only filter at the
granularity of the relationship. At a more detailed (higher) granularity,
they just repeat the total at the supported grain.



NOTE  The use of MMR and SMR is required to avoid confusion
with other definitions of many-to-many relationships. A complete
description of the MMR and SMR relationships in Power BI is
available in the article, Relationships in Power BI and Tabular
models.

The Scenario table implements the best practice of always using
dimension tables to slice and dice, instead of using columns in the
fact table (Forecast in this case) for slicers and filters.

The forecast information of this pattern comes from an Excel file.
The same Excel file includes another table called Override, which
contains information about new and dismissed products. The
relevant columns in the Override table are:

Year New: the year a new product was introduced.

Year Del: the year a product was (or will be) dismissed.

Amount: the forecast sales over all countries for the first year.

Because the Override table has the same granularity as the Product
table, we used Power Query to merge these three columns directly
in the Product table. Figure 24-3 shows the content of these three
columns imported in Product from the Override table.

FIGURE 24-3 For each new or dismissed product, the relevant information is stored in the
Product table itself.

https://www.sqlbi.com/articles/relationships-in-power-bi-and-tabular-models/


This is not necessarily an optimal model. We designed it to show
you the DAX code, but different requirements might justify using a
different model. You should update the calculations to reflect your
specific requirements and data model.

Business choices
As with the model, we needed to set some business choices in order
to author the DAX code. The following sections describe the
business rules implemented in this pattern.

Allocation based on the previous year
When the forecast needs to be reallocated, we consider the sales in
the previous year as an allocation factor. In other words, in order to
show the forecast of a subcategory, we reallocate the budget defined
at the category level by the percentage of sales of the given
subcategory against the corresponding category in the previous
year.

This is better depicted in Figure 24-4.



FIGURE 24-4 The forecast is allocated to subcategories based on the sales of the previous
year.

Consequently, a previously existing product that had no sales in
one year, will have a forecast of zero in the following year.

Dismissed products do not contribute
to the allocation
If a product is dismissed, its forecast for the new year is zero since
the product is no longer available for sale. Consequently, the
forecast for the new year does not include dismissed products. If we



ignored this condition, the allocation would produce undesired
results.

For example, think about what would happen if all the products in
the category Cell Phones Accessories were dismissed. In the United
States, they contribute for 26% of sales, as shown in Figure 24-4.
Because the products of this category are dismissed, the forecast for
the next year does not include their sales. The allocation formula
must take this into account, by increasing the percentages of other
subcategories to compensate for the absence of a certain category.
If not, the total allocated forecast would only add up to 74% of the
total forecast, hiding the 26% that are no longer being allocated to
dismissed products.

In summary, if a product is dismissed one year, its sales in the
previous year are not considered for the forecast allocation.

New products have their own forecast
amount
This is not really a business decision, but rather a choice to simplify
the model. If a product is being introduced as new, then its sales in
the previous year are at zero. As we stated earlier, this would
translate into an empty forecast for the following year. Still, the
product being new is expected to have no sales in the previous year.

For this reason, every new product has a forecast amount
associated to it for the year when it is being introduced. This is a
single value, which is allocated in different store countries depending
on the distribution percentage of all the other products over the store
countries.

As with other options, this is not necessarily the best choice; but we
must make a choice in order to write working code. In other
scenarios, there could be a table containing more detailed forecasts,



or the issue could be ignored for a specific business. Therefore,
consider this as an optional implementation option and not as a
mandatory requirement.

Products can be dismissed or
introduced on a yearly basis
In order to keep the model simple enough, we introduced this
artificial limitation: a product is introduced at the beginning of a year
(therefore it starts selling in January) and dismissed at the end of a
year (no more sales in the new year).

Handling the introduction of products at different points in time
introduces a new level of complexity around time. Indeed, when
computing the forecast for the new products, the amount should be
allocated only starting at a given point in time. Dismissed products
present a similar issue. We decided not to handle this complexity in
order to focus more on the allocation algorithm. Specific and more
detailed business requirements might require some adjustment to
the proposed formulas.

Forecast allocation
The allocation of forecast uses sales in the previous year to
determine the percentage of the total forecast that must be allocated
to the current selection. The formula is composed of two main
sections: the allocation of the forecast and the computation of the
value for new products.

Figure 24-5 helps us better understand the calculation by showing
the Forecast Amount and the % Sales PY (BG) measures side by side.
% Sales PY (BG) is the allocation percentage at the budget granularity
that is internally computed in Forecast Amount. The sample file



includes a separate definition of % Sales PY (BG) just to display this
intermediate calculation that is not relevant to the pattern.

FIGURE 24-5 The figure shows the relevant parts of the forecast allocation by product.

There are two categories selected in the report: Cell phones and
Clothes. Clothes is a new category, that was not present in the
previous year. The full forecast for each store country (China and
Germany are visible in Figure 24-5) includes the allocated forecast
for the selected country, plus the amount assigned to new products
through the Forecast New column imported from the Amount column in
the Override table of the Excel file.

The model is designed in a way that there is a single forecast
amount for each product for the entire year. This number must be



allocated by store country based on the sales of the previous year
for that country, as shown by % Sales PY by Store in Figure 24-6. This
time, the allocation is made only by store country – no other columns
are involved.

FIGURE 24-6 The figure shows the relevant parts of the forecast allocation by country.

This is the definition of the Forecast Amount measure:

Measure in the Forecast table







The formula works with a single year selected and it also produces
correct results with a reduced set of dates within one year. It is also
possible to implement time intelligence calculations over the Forecast
Amount measures, like the year-to-date in the YTD Forecast measure:

Measure in the Forecast table

Showing actuals and forecasts on the
same chart

A common requirement is to show both actual and forecast
measures in the same chart. This type of requests might end up in
producing reports that are not very useful, like the one visible in
Figure 24-7. The YTD Sales (not filtered) measure displays the year-
to-date of Sales Amount: because the Sales table contains data until
August 14, 2010, the year-to-date is a flat line from August to
December.



FIGURE 24-7 Actual and forecast sales are represented in the same line chart, relying on
the projection measures.

A better visualization in these cases shows the actual sales amount
up to the last day of sales available, and then it uses the forecast for
the following days to complete the chart for the future months. Figure
24-8 shows this type of report through a line chart.



FIGURE 24-8 Actual and forecast sales are represented in the same line chart using the
projection measures.

The last complete month showing data for the YTD Sales Amount
measure is July 2010. The following months are not displayed
thanks to the date check in the following implementation:

Measure in the Sales table



The YTD Forecast measure is only used to display the complete
forecast in the line chart; It just computes the year-to-date of Forecast
Amount defined in the previous section:

Measure in the Forecast table

The YTD Projection measure computes the year-to-date of the
Projection Amount measure. The latter uses Sales Amount for the dates
available in the Sales table (until August 14, 2010 in this example)
and Forecast Amount for the dates following the last date available in
Sales (dates greater than August 14, 2010 in this example):

Measure in the Forecast table



Measure in the Forecast table

The YTD Adjusted Projection measure is like YTD Projection;
however, it applies an adjustment factor to the Forecast Amount based
on the comparison between available transactions and the
corresponding forecast:

Measure in the Forecast table



Measure in the Forecast table

The adjustment factor computed by the % Adjustment measure
could have many different implementations, depending on specific
business requirements. In this example we use the ratio between
Sales Amount and Forecast Amount for the dates available in the Sales
table:

Measure in the Forecast table
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